1600
 Mower-Conditioner

FOREWORD

This manual is written for an experienced technician. Essential tools required in performing certain service work are identified in this manual and are recommended for use.

Live with safety: Read the safety messages in the introduction of this manual and the cautions presented throughout the text of the manual.

CAUTION: This is the safety-alert symbol. When you see this symbol on the machine or in this manual, be alert to the potential for personal injury.

Technical manuals are divided in two parts: repair and diagnostics. Repair sections tell how to repair the components. Diagnostic sections help you identify the majority of routine failures quickly.

Information is organized in groups for the various components requiring service instruction. At the beginning of each group are summary listings of all applicable essential tools, service equipment and tools, other materials needed to do the job, service parts kits, specifications, wear tolerances, and torque values.

Binders, binder labels, and tab sets can be ordered by John Deere dealers direct from the John Deere Distribution Service Center.

This manual is part of a total product support program.

FOS MANUALS-REFERENCE
TECHNICAL MANUALS-MACHINE SERVICE
COMPONENT MANUALS-COMPONENT SERVICE
Fundamentals of Service (FOS) Manuals cover basic theory of operation, fundamentals of troubleshooting, general maintenance, and basic type of failures and their causes. FOS Manuals are for training new personnel and for reference by experienced technicians.

Technical Manuals are concise guides for specific machines. Technical manuals are on-the-job guides containing only the vital information needed for diagnosis, analysis, testing, and repair.

Component Technical Manuals are concise service guides for specific components. Component technical manuals are written as stand-alone manuals covering multiple machine applications.

JOHN DEERE DEALERS

IMPORTANT: Please remove this page and route through your service department.

This is a complete revision for TM1474, 1600
Mower-Conditioner.

Listed below is a brief explanation of what was changed.

1. The information on the double overlap cutterbar.
2. The information on the diagnostic procedure for the platform hydraulic drive system.
3. The procedure for installing bushings in the wheel drops.
4. The repair and adjustment of the conditioner roll drive.
5. The repair and adjustment of the platform auger drive.
6. The repair of the knife drive case.

Contents

```
SECTION 10-General
Group 05-Safety
Group 10-General Information
Group 15-Specifications
Group 20-Lubrication
```


SECTION 20-Cutting Components

Group 05-General Information
Group 10-Diagnosing Malfunctions
Group 15-Cutterbar
Group 20-Knife Drive Case
SECTION 30—Platform
Group 05-General Information
Group 10-Diagnosing Malfunctions
Group 15-Platform Frame
Group 20-Reel
Group 25-Augers
Group 30—Platform Drives

SECTION 40-Conditioner

Group 05-General Information
Group 10-Diagnosing Malfunctions
Group 15-Chain Drive
Group 20-Roll Arms
Group 25-Rolls

SECTION 50-Carrier Frame

Group 05-General Information
Group 10-Diagnosing Malfunctions
Group 15-Frame Components
Group 20-Tongue
Group 25-Wheel Hub and Support
Group 30-Electrical System

SECTION 60—Hydraulics

Group 05-General Information
Group 10-Diagnosing Malfunctions
Group 15-Hydraulic Tests
Group 20-Hydraulic Pump
Group 25-Planetary Gear Case
Group 30-Hydraulic Motor
Group 35-Relief Valve and Filter

Group 40-Steering Cylinder
Group 45-Lift Cylinders
Index

All information, illustrations and specifications in this manual are based on the latest information available at the time of publication. The right is reserved to make changes at any time without notice.

Section
 10 General

Contents

Page
Group 05-Safety 10-05-1
Group 10-General Information
Machine Description
10-10-1
Tractor Requirement 10-10-1
Three-Point Hitch 10-10-2

Group 15-Specifications
Machine Specifications 10-15-1
Metric Cap Screw Torque Values 10-15-3
Inch Cap Screw Torque Values 10-15-4
Tighten O-Ring Fittings 10-15-5
Tighten Flare-Type Tube Fittings 10-15-6

Group 20—Lubrication
Hydrostatic Drive Oil 10-20-1
Extreme Pressure Grease 10-20-1
Knife Drive Case Grease 10-20-2
Gear Oil . 10-20-2

HANDLE FLUIDS SAFELY-AVOID FIRES

When you work around fuel, do not smoke or work near heaters or other fire hazards.

Store flammable fluids away from fire hazards. Do not incinerate or puncture pressurized containers.

Make sure machine is clean of trash, grease, and debris.
Do not store oily rags; they can ignite and burn
 spontaneously.

PREPARE FOR EMERGENCIES

Be prepared if a fire starts.
Keep a first aid kit and fire extinguisher handy.
Keep emergency numbers for doctors, ambulance service, hospital, and fire department near your telephone.

AVOID HIGH-PRESSURE FLUIDS

Escaping fluid under pressure can penetrate the skin causing serious injury.

Avoid the hazard by relieving pressure before disconnecting hydraulic or other lines. Tighten all connections before applying pressure.

Search for leaks with a piece of cardboard. Protect hands and body from high pressure fluids.

If an accident occurs, see a doctor immediately. Any fluid injected into the skin must be surgically removed within a few hours or gangrene may result. Doctors unfamiliar with this type of injury should reference a knowledgeable medical source. Such information is available from Deere \& Company Medical Department in Moline, Illinois, U.S.A.

SUPPORT MACHINE PROPERLY

Always lower the attachment or implement to the ground before you work on the machine. If you must work on a lifted machine or attachment, securely support the machine or attachment.

Do not support the machine on cinder blocks, hollow tiles, or props that may crumble under continuous load. Do not work under a machine that is supported solely by a jack. Follow recommended procedures in this manual.

WEAR PROTECTIVE CLOTHING

Wear close fitting clothing and safety equipment appropriate to the job.

Prolonged exposure to loud noise can cause impairment or loss of hearing.

Wear a suitable hearing protective device such as earmuffs or earplugs to protect against objectionable or uncomfortable loud noises.

Operating equipment safely requires the full attention of the operator. Do not wear radio or music headphones while operating machine.

SERVICE MACHINES SAFELY

Tie long hair behind your head. Do not wear a necktie, scarf, loose clothing, or necklace when you work near machine tools or moving parts. If these items were to get caught, severe injury could result.

Remove rings and other jewelry to prevent electrical shorts and entanglement in moving parts.

WORK IN VENTILATED AREA

Engine exhaust fumes can cause sickness or death. If it is necessary to run an engine in an enclosed area, remove the exhaust fumes from the area with an exhaust pipe extension.

If you do not have an exhaust pipe extension, open the doors and get outside air into the area.

WORK IN CLEAN AREA

Before starting a job:

- Clean work area and machine.
- Make sure you have all necessary tools to do your job.
- Have the right parts on hand.
- Read all instructions thoroughly; do not attempt shortcuts.

REMOVE PAINT BEFORE WELDING OR HEATING

Avoid potentially toxic fumes and dust.
Hazardous fumes can be generated when paint is heated by welding, soldering, or using a torch.

Do all work outside or in a well ventilated area. Dispose of paint and solvent properly.

Remove paint before welding or heating:

- If you sand or grind paint, avoid breathing the dust.

Wear an approved respirator.

- If you use solvent or paint stripper, remove stripper with soap and water before welding. Remove solvent or paint stripper containers and other flammable material from area. Allow fumes to disperse at least 15 minutes before welding or heating.

AVOID HEATING NEAR PRESSURIZED FLUID LINES

Flammable spray can be generated by heating near pressurized fluid lines, resulting in severe burns to yourself and bystanders. Do not heat by welding, soldering, or using a torch near pressurized fluid lines or other flammable materials. Pressurized lines can be accidentally cut when heat goes beyond the immediate flame area.

ILLUMINATE WORK AREA SAFELY

Illuminate your work area adequately but safely. Use a portable safety light for working inside or under the machine. Make sure the bulb is enclosed by a wire cage. The hot filament of an accidentally broken bulb can ignite spilled fuel or oil.

REPLACE SAFETY SIGNS

Replace missing or damaged safety signs. See the machine operator's manual for correct safety sign placement.

USE PROPER LIFTING EQUIPMENT

Lifting heavy components incorrectly can cause severe injury or machine damage.

Follow recommended procedure for removal and installation of components in the manual.

SERVICE TIRES SAFELY

Explosive separation of a tire and rim parts can cause serious injury or death.

Do not attempt to mount a tire unless you have the proper equipment and experience to perform the job.

Always maintain the correct tire pressure. Do not inflate the tires above the recommended pressure. Never weld or heat a wheel and tire assembly. The heat can cause an increase in air pressure resulting in a tire explosion. Welding can structurally weaken or deform the wheel.

When inflating tires, use a clip-on chuck and extension hose long enough to allow you to stand to one side and NOT in front of or over the tire assembly. Use a safety cage if available.

Check wheels for low pressure, cuts, bubbles, damaged rims or missing lug bolts and nuts.

SERVICE TIRES SAFELY

Explosive separation of a tire and rim parts can cause serious injury or death.

Do not attempt to mount a tire unless you have the proper equipment and experience to perform the job.

Always maintain the correct tire pressure. Do not inflate the tires above the recommended pressure. Never weld or heat a wheel and tire assembly. The heat can cause an increase in air pressure resulting in a tire explosion.
 Welding can structurally weaken or deform the wheel.

When inflating tires, use a clip-on chuck and extension hose long enough to allow you to stand to one side and NOT in front of or over the tire assembly. Use a safety cage if available.

Check wheels for low pressure, cuts, bubbles, damaged rims or missing lug bolts and nuts.

PRACTICE SAFE MAINTENANCE

Understand service procedure before doing work. Keep area clean and dry.

Never lubricate, service, or adjust machine while it is moving. Keep hands, feet, and clothing from power-driven parts. Disengage all power and operate controls to relieve pressure. Lower equipment to the ground. Stop the engine. Remove the key. Allow machine to cool.

Securely support any machine elements that must be raised for service work.

Keep all parts in good condition and properly installed. Fix damage immediately. Replace worn or broken parts. Remove any buildup of grease, oil, or debris.

Disconnect battery ground cable (-) before making adjustments on electrical systems or welding on machine.

USE PROPER TOOLS

Use tools appropriate to the work. Makeshift tools and procedures can create safety hazards.

Use power tools only to loosen threaded parts and fasteners.

For loosening and tightening hardware, use the correct size tools. DO NOT use U.S. measurement tools on metric fasteners. Avoid bodily injury caused by slipping wrenches.

Use only service parts meeting John Deere specifications.

DISPOSE OF WASTE PROPERLY

Improperly disposing of waste can threaten the environment and ecology. Potentially harmful waste used with John Deere equipment include such items as oil, fuel, coolant, brake fluid, filters, and batteries.

Use leakproof containers when draining fluids. Do not use food or beverage containers that may mislead someone into drinking from them.

Do not pour waste onto the ground, down a drain, or
 into any water source.

Air conditioning refrigerants escaping into the air can damage the Earth's atmosphere. Government regulations may require a certified air conditioning service center to recover and recycle used air conditioning refrigerants.

Inquire on the proper way to recycle or dispose of waste from your local environmental or recycling center, or from your John Deere dealer.

LIVE WITH SAFETY

Before returning machine to customer, make sure machine is functioning properly, especially the safety systems. Install all guards and shields.

MACHINE DESCRIPTION

The John Deere 1600 Mower-Conditioner is a mid-pivot design which allows cutting back-and-forth or around the field. Machine raise and swing are controlled by tractor hydraulics, and a PTO hydrostatic pump drives the power train. The platform
consists of a reel, a cutterbar with a timed dual knife, and two augers to deliver crop to the conditioner rolls. The size of the windrow is controlled by forming shields with an adjustable swath flap.

TRACTOR REQUIREMENT

The tractor must have a minimum of 70 PTO horsepower and can be equipped with a 540 or 1000 rpm shaft. Dual selective control valves with 13790 kPa (138 bar) (2000 psi) are required to operate the hydraulics. The drawbar attachment hitch must be set to the following dimensions:

A-356 mm (14-in.)
540 rpm
406 mm (16 -in.)
1000 rpm
B-152 to 305 mm (6 to 12 in .)
C- 330 to 508 mm (13 to 20 in .) To Ground D-Equal Angle Hitch

THREE-POINT HITCH

The three-point hitch allows shorter turns and makes the 2 machine more maneuverable. The hitch can be used with Category 2 and 3 N three-point hitches and quick couplers. When the hitch is installed, parts are included to extend the hydrostatic pump and hydraulic hoses to the tractor.

Group 15 Specifications

MACHINE SPECIFICATIONS

OPERATING SPEED $9.7 \mathrm{~km} / \mathrm{h}$ (Up to 6 mph)
CUTTING HEIGHT -51 to 483 mm (-2 to 19 in .)
WIDTH OF CUT:
12-Ft (3.66 m) Platform 3.73 m (12 ft 3 in.$)$
14-Ft (4.27 m) Platform 4.34 m (14 ft 3 in.$)$
16-Ft (4.88 m) Platform 4.95 m (16 ft 3 in .)
WINDROW WIDTH:
(Depending on crop conditions) 1.02 to 2.74 m (40 in. to 9 ft$)$
TRANSPORTING WIDTH:
$12 \mathrm{Ft}(3.66 \mathrm{~m})$ Platform 4.22 m (13 ft 10-1/4 in.)
14 Ft (4.27 m) Platform 4.83 m (15 ft 10-1/4 in.)
16 Ft (4.88 m) Platform 5.44 m (17 ft 10-1/4 in.)
HEIGHT (Transport) 1.98 m (6 ft 6 in .)
LENGTH:
12-Ft and 14-Ft (3.66 m and 4.27 m) Platforms 6.50 m (21 ft 3-1/2 in.)
16 Ft (4.88 m) Platforms 7.25 m (23 ft 9-1/2 in.)
WEIGHT
With 12-Ft $(3.66 \mathrm{~m})$ Platform 2270 kg (5000 lb)With $14-\mathrm{Ft}(4.27 \mathrm{~m})$ Platform$2450 \mathrm{~kg}(5400 \mathrm{lb})$With 16-Ft (4.88 m) Platform$2630 \mathrm{~kg}(5800 \mathrm{lb})$
CUTTERBARGuards
Timed dual knife
Heavy-duty, double-forged steel
Non-clogs (optional)
Guard Angle 6° to 12°
Knives (Chrome) Overserrated
Speed 1764 strokes per minute
Type Drive Enclosed, running in oil
REEL:
Adjustable Up and down, fore and aft
Diameter1067 mm (42 in.)
Drive V-belt with spring-loaded idler
Speed: Variable 66 to 80 rpm
Tooth Bars 4 Standard and 5 (optional)
AUGERS:
Upper Auger Diameter . 229 mm (9 in.)
Lower Auger Diameter . 292 mm (11.5 in.)
Drive . V-Belt and 50 Chain
Speed . 392 rpm lower; 430 rpm upper
CONDITIONER ROLLS . Urethane, intermittent cleat, intermeshing
Diameter . 254 mm (10 in.)
Speed . 643 rpm
Length . 2794 mm (110 in.)
Drive . No. 60 O-ring roller chain
WHEELS:
Tire Size and Tire Inflation Pressure:
3.66 m (12-Ft) Platform . 11L x 14-6 Ply $193 \mathrm{kPa}(28 \mathrm{psi})$ (1.9 bar)
4.27 and $4.88 \mathrm{~m}(14-\mathrm{Ft}$ and $16-\mathrm{Ft}$) Platforms . 31L x $13.5 \times 15-6$ PR $207 \mathrm{kPa}(30 \mathrm{psi})(2.1 \mathrm{bar})$
RESERVOIR CAPACITY:
3.66 m and 4.27 m (12-Ft and 14-Ft) Platforms . 94.6 L (25 gal)
4.88 m (16-Ft) Platform . 102.2 L (27 gal)
POWER TAKE-OFF SPEED . 540 rpm or 1000 rpm (1-3/8 in. only)
RECOMMENDED TRACTOR . $52.5 \mathrm{~kW}(70 \mathrm{hp})$ or larger
TRACTOR HYDRAULIC PRESSURE TO LIFT PLATFORM
13790 kPa (138 bar) (2000 psi)
(Specifications and design are subject to change without notice.)

METRIC BOLT AND CAP SCREW TORQUE VALUES

	4.8	8.8 9.8	10.9	12.9
Property Class and Head Marking:	4.8			
Properly Class and Nut Markinge				

Size	Class 4.8				Class 8.8 or 9.8				Class 10.9				Class 12.9			
	Lubricated ${ }^{\text {a }}$		Drya		Lubricateda		Drya		Lubricateda		Drya		Lubricateda		Drya	
	N•m	lb-ft	$\mathrm{N} \cdot \mathrm{m}$	lb-ft	N•m	lb-ft	$\mathrm{N} \cdot \mathrm{m}$	lb -ft	$\mathrm{N} \cdot \mathrm{m}$	lb -ft						
M6	4.8	3.5	6	4.5	9	6.5	11	8.5	13	9.5	17	12	15	11.5	19	14.5
M8	12	8.5	15	11	22	16	28	20	32	24	40	30	37	28	47	35
M10	23	17	29	21	43	32	55	40	63	47	80	60	75	55	95	70
M12	40	29	50	37	75	55	95	70	110	80	140	105	130	95	165	120
M14	63	47	80	60	120	88	150	110	175	130	225	165	205	150	260	190
M16	100	73	125	92	190	140	240	175	275	200	350	225	320	240	400	300
M18	135	100	175	125	260	195	330	250	375	275	475	350	440	325	560	410
M20	190	140	240	180	375	275	475	350	530	400	675	500	625	460	800	580
M22	260	190	330	250	510	375	650	475	725	540	925	675	850	625	1075	800
M24	330	250	425	310	650	475	825	600	925	675	1150	850	1075	800	1350	1000
M27	490	360	625	450	950	700	1200	875	1350	1000	1700	1250	1600	1150	2000	1500
M30	675	490	850	625	1300	950	1650	1200	1850	1350	2300	1700	2150	1600	2700	2000
M33	900	675	1150	850	1750	1300	2200	1650	2500	1850	3150	2350	2900	2150	3700	2750
M36	1150	850	1450	1075	2250	1650	2850	2100	3200	2350	4050	3000	3750	2750	4750	3500

DO NOT use these values if a different torque value or tightening procedure is given for a specific application. Torque values listed are for general use only. Check tightness of fasteners periodically.

Shear bolts are designed to fail under predetermined loads. Always replace shear bolts with identical property class.

Fasteners should be replaced with the same or higher property class. If higher property class fasteners are used, these should only be tightened to the strength of the original.

[^0]Make sure fasteners threads are clean and that you properly start thread engagement. This will prevent them from failing when tightening.

Tighten plastic insert or crimped steel-type lock nuts to approximately 50 percent of the dry torque shown in the chart, applied to the nut, not to the bolt head. Tighten toothed or serrated-type lock nuts to the full torque value.

UNIFIED INCH BOLT AND CAP SCREW TORQUE VALUES

SAE Grade and Head Matkinge	$1 \text { or } 2^{b}$ NO MARK		
SAE Grade and Nut Marking:	2 NO MARK	5	8 4 4 4

Size	Grade 1				Grade $\mathbf{2}^{\text {b }}$				Grade 5, 5.1, or 5.2				Grade 8 or 8.2			
	Lubricated ${ }^{\text {a }}$		Drya		Lubricateda		Drya		Lubricateda		Drya		Lubricateda		Drya	
	N•m	lb -ft	$\mathrm{N} \cdot \mathrm{m}$	lb-ft	$\mathrm{N} \cdot \mathrm{m}$	lb-ft	N•m	lb-ft	$\mathrm{N} \cdot \mathrm{m}$	lb-ft						
1/4	3.7	2.8	4.7	3.5	6	4.5	7.5	5.5	9.5	7	12	9	13.5	10	17	12.5
5/16	7.7	5.5	10	7	12	9	15	11	20	15	25	18	28	21	35	26
3/8	14	10	17	13	22	16	27	20	35	26	44	33	50	36	63	46
7/16	22	16	28	20	35	26	44	32	55	41	70	52	80	58	100	75
1/2	33	25	42	31	53	39	67	50	85	63	110	80	120	90	150	115
9/16	48	36	60	45	75	56	95	70	125	90	155	115	175	130	225	160
5/8	67	50	85	62	105	78	135	100	170	125	215	160	215	160	300	225
3/4	120	87	150	110	190	140	240	175	300	225	375	280	425	310	550	400
7/8	190	140	240	175	190	140	240	175	490	360	625	450	700	500	875	650
1	290	210	360	270	290	210	360	270	725	540	925	675	1050	750	1300	975
1-1/8	470	300	510	375	470	300	510	375	900	675	1150	850	1450	1075	1850	1350
1-1/4	570	425	725	530	570	425	725	530	1300	950	1650	1200	2050	1500	2600	1950
1-3/8	750	550	950	700	750	550	950	700	1700	1250	2150	1550	2700	2000	3400	2550
1-1/2	1000	725	1250	925	990	725	1250	930	2250	1650	2850	2100	3600	2650	4550	3350

DO NOT use these values if a different torque value or tightening procedure is given for a specific application. Torque values listed are for general use only. Check tightness of fasteners periodically.

Shear bolts are designed to fail under predetermined loads. Always replace shear bolts with identical grade.
a "Lubricated" means coated with a lubricant such as engine oil, or fasteners with phosphate and oil coatings. "Dry" means plain or zinc plated without any lubrication.
${ }^{\text {b }}$ Grade 2 applies for hex cap screws (not hex bolts) up to 152 mm (6-in.) long. Grade 1 applies for hex cap screws over 152 mm (6-in.) long, and for all other types of bolts and screws of any length.

Fasteners should be replaced with the same or higher grade. If higher grade fasteners are used, these should only be tightened to the strength of the original.

Make sure fasteners threads are clean and that you properly start thread engagement. This will prevent them from failing when tightening.

Tighten plastic insert or crimped steel-type lock nuts to approximately 50 percent of the dry torque shown in the chart, applied to the nut, not to the bolt head. Tighten toothed or serrated-type lock nuts to the full torque value.

TIGHTEN O-RING FITTINGS*

1. Inspect O-ring and seat for dirt or obvious defects.
2. On angle fittings, back the lock nut off until washer bottoms out at top of groove.
3. Hand tighten fitting until backup washer or washer face (if straight fitting) bottoms on face and O-ring is seated.
4. Position angle fittings by unscrewing no more than one turn.
5. Tighten straight fittings to torque shown.
6. Tighten angle fittings to torque shown while holding the body of fitting with a wrench.

* The torque values shown are based on lubricated connections as in reassembly.

TIGHTEN FLARE TYPE TUBE FITTINGS

1. Check flare and flare seat for defects that might cause leakage.
2. Align tube with fitting before tightening.
3. Lubricate connection and hand tighten swivel nut until snug.
4. To prevent twisting the tube(s), use two wrenches.

Place one wrench on the connector body and with the second, tighten the swivel nut to the torque shown in this chart.

* The torque values shown are based on lubricated connections as in reassembly.

HYDROSTATIC DRIVE OIL

Use oil viscosity based on the expected air temperature range during the period between oil changes.

The following oils are preferred:

- John Deere HY-GARD ${ }^{\circledR}$
- John Deere Low Viscosity HY-GARD® ${ }^{\circledR}$

Other oils may be used if they meet one of the following:

- John Deere Standard JDM J20C
- John Deere Standard JDM J20D

Oils meeting Military Specification MIL-L-46167B may be used as arctic oils.

GREASE

Use grease based on the expected air temperature range during the service interval.

The following greases are preferred:

- John Deere MOLY HIGH TEMPERATURE EP GREASE
- John Deere HIGH TEMPERATURE EP GREASE
- John Deere GREASE-GARD ${ }^{\text {TM }}$

Other greases may be used if they meet one of the following:

- SAE Multipurpose EP Grease with a maximum of 5% molybdenum disulfide
- SAE Multipurpose EP Grease

Greases meeting Military Specification MIL-G-10924F may be used as arctic grease.

KNIFE DRIVE CASE GREASE

John Deere GL-5 Gear Lubricant is recommended.

Use oil viscosity based on the expected air temperature range during the period between oil changes.

The following oils are preferred:

- John Deere EXTREME-GARDTM
- John Deere GL-5 GEAR LUBRICANT

Other oils may be used if they meet the following:

- API Service Classification GL-5

Oils meeting Military Specification MIL-L-10324A may be used as arctic oils.

Page
Group 05-General Information
Cutterbar 20-05-1
Knife Drive 20-05-1
Specifications 20-05-1
Torque Values 20-05-2
Special Tools 20-05-2
Fabricated Tools 20-05-3
Group 10—Diagnosing Malfunctions 20-10-1
Group 15-Cutterbar
Remove Knives 20-15-1
Install Knives 20-15-1
Time Knives 20-15-2
SN -915000
Install Regular Guards on Cutterbar 20-15-3
Install Non-Clog Guards on Cutterbar 20-15-5
SN 915001-
Install Regular Guards on Cutterbar 20-15-7
Install Non-Clog Guards on Cutterbar 20-15-9
Adjust Regular Knife Hold-Downs 20-15-11
Adjust Non-Clog Knife Hold-Downs 20-15-12
Use Cutterbar Straightening Tool 20-15-12
Sharpen Knife Sections 20-15-13
Replace Bolt-On Knife Sections 20-15-13
Replace Center Knife Sections 20-15-14
Replace Riveted Knife Sections 20-15-15
Replace Knife Head 20-15-16
Recondition Knife Head 20-15-16
Group 20-Knife Drive Case
Remove Knife Drive Case 20-20-1
Disassemble Knife Drive Case 20-20-2
Inspect Knife Drive Case 20-20-5
Assemble Knife Drive Case 20-20-7
Install Knife Drive Case 20-20-12
Section
Cutting Components
Contents

Group 05 General Information

CUTTERBAR

The cutterbar is a multiple series of shears. To cut properly, the knife (A) must run smoothly in the cutterbar, and the knife section (B) must rest on the knife guard (C). If the knife guards and knife hold-downs (D) are loose or worn, the knife will chew and tear the crop.

The cutterbar can be equipped with regular or non-clog
 guards, and with smooth, underserrated, or overserrated knife sections.

A-Knife

B-Knife Section
C-Knife Guard
D-Knife Hold-Down

KNIFE DRIVE

The knife drive cases (A) are driven by timing belts (B) to synchronize the dual knives and reduce vibration.

SPECIFICATIONS

ITEM

Knife Section (Regular)	Clearance	0.13 mm (0.005 in.)
Knife Section (Non-Clog)	Clearance	0.13 mm (0.005 in.)
Knife Section	Bevel	20-35 Degrees
Yoke Bushings	Position	Within 0.5 mm (0.02 in.) of Flush
Knife Drive Shaft Bearings	Rolling Torque	0.33-0.56 N.m ($3-5 \mathrm{lb}-\mathrm{in}$)
Upper Support Bearing	Position	Flush with Inside Surface
Lower Support Bearing	Position	$8.2-9.2 \mathrm{~mm}$ (0.32-0.36 in.) into Bore
Support Seal	Position	Flush to 0.8 mm (0.30 in.) Below
Knife Head Bearing	Position	6.6 mm (0.26 in.) into Bore
Knife Head Seal	Position	Flush with top of bore
Knife Drive Belt	Deflection	11.5 mm (0.45 in .) with $45-58 \mathrm{~N}$ (10-13 lb) Pressure
Guards	Vertical Alignmen	Plus or Minus 3 mm (0.1 in.)

TORQUE VALUES

LOCATION	$N \cdot m$	(lb-ft)
Cutterbar Single Guards	54-75	39-55
Regular and Non-Clog Guards	61-68	45-50
Knife Clamp Bolt	190-217	140-160
Support to Knife Drive Case	244-271	180-200
Knife Drive Case Cover	30-40	22-29
Knife Drive Case Gear	136-162	100-119
Knife Arm to Yoke	244	180
Knife Drive Case Support to Platform Frame	136 ± 27	100 ± 20

SPECIAL TOOLS

1. JDO-1 - Use to remove knife drive arm from knife drive case yoke.

2. TY5011 - Use to remove and install riveted knife sections.

3. DO1045AA - Driver set used to install bearings and seals in knife head and gear case support.

FABRICATED TOOLS

DFE1 - Shim used when pressing spindles into yoke on knife drive shaft.

> A-3.8 mm (0.150 in.)
$B-51 \mathrm{~mm}$ (2 in.)
C-25 mm (1 in.)
D-38 mm (1-1/2 in.)
$\mathrm{E}-102 \mathrm{~mm}$ (4 in .)

EX,1474,2005,H-19-04MAY93

DFE2 - Wrench used to remove and install stake nut on knife drive shaft.

> A-4.8 mm (3/16 in.)
> B-102 mm (4 in.)
> C-610 mm (24 in.)
> D-64 mm (2-1/2 in.)
> E-67 mm (2-5/8 in.)

A-25 x 50 mm (1 x 2-in.) tubing with 3 mm (1/8-in.) wall

C-10 mm (3/8-in.) Round
Rod

D-38 mm (1-1/2 in.)
E-38 mm (1-1/2 in.)
F-76 mm (3-in.)

G-6 mm (1/4 in.)
H-35 mm (1-3/8 in.)
I-18 mm (0.70 in.)

DFE4 - Cutterbar straightening tool used to straighten sill and runner.

Put 38 mm (1-1/2 in.) welds along each side of round tube. (Total of four welds.)

Weld end plate to tubing on all four sides.

DIAGNOSING MALFUNCTIONS

Symptom
Breakage of Knife Head

Breakage of knife
sections or guards

Knife back breakage
Worn knife head pin.

Bent, broken, or worn guard.

Dull knife.

Wear bars not in line against knife back.

Bearings dry.
Dull knife, or sections missing.

Guards out of alignment or show excessive wear of ledger area.

Knife is digging into dirt.

Solution

Use two prong guard WITHOUT WEAR BAR when making single prong guard.

Position knife pin at correct depth. (See INSTALL KNIVES in this Section.)

Raise cutterbar using gauge shoes and reduce guard angle. (See Adjust Gauge Shoes and Adjust Platform Guard Angle in Section 30.)

Adjust float springs. (See Adjust Platform Float in Section 30.)

Replace. (See Install Regular or Non-Clog Guards in this section.)

Raise reel and replace damaged parts. (See Adjust Reel and Replace Reel Teeth in Section 30.)

Reduce speed.
Replace. (See Remove Knives and Install Knives in this section.)

Replace. (See Install Regular or Non-Clog Guards in this section.)

Sharpen or replace. (See Sharpen Knife Sections in this section.)

Adjust guards. (See Install Regular or Non-Clog Guards in this section.)

Lubricate bearings.
Replace missing, damaged or worn knife sections. (See Replace Knife Sections in this section.)

Align guards and replace any that have excessive ledger wear. (See Install Regular or Non-Clog Guards in this section.)

Adjust platform float. (See Adjust Platform Float in Section 30.)

Symptom	Problem	Solution
		Raise cutterbar using gauge shoes. (See Adjust Gauge Shoes in Section 30.)
		Adjust guard angle. (See Adjust Guard Angle in Section 30.)
	Knife is binding on guards.	Align knife and guards so they do not bind. (See Install Regular or Non-Clog Guards in this section. See Adjust Regular or Non-Clog Hold-Downs in this section.)
	Bent or twisted knife bar.	Straighten or replace knife. (See Remove Knives and Install Knives in this section.)
	Machine running too fast.	Reduce PTO speed to rated PTO speed.
Excessive knife guard failure	Guards striking rocks and obstructions.	Adjust gauge shoes to raise guard tips. (See Adjust Gauge Shoes in Section 30.)
		Adjust guard angle. (See Adjust Guard Angle in Section 30.)
		Adjust platform flotation. (See Adjust Platform Float in Section 30.)
	Guards bent or out of alignment.	Straighten cutterbar, or replace guards. (See Install Regular or Non-Clog Guards in this section.)
Knife section breakage	Cutterbar striking rocks.	Adjust gauge shoes to raise cutterbar above rocks or mounds. (See Adjust Gauge Shoes in Section 30.)
		Adjust guard angle. (See Adjust Guard Angle in Section 30.)
		Adjust platform flotation. (See Adjust Platform Float in Section 30.)
Cutterbar noise	Knife sections worn or damaged.	Replace knife sections. (See Replace Knife Sections in this section.)
	Needle bearing is loose.	Replace bearing. (See Recondition Knife Head in this section.)
	Guards damaged or out of alignment.	Align or replace damaged guards. (See Install Regular or Non-Clog Guards in this section.)
		Continued on next page
TM1474 (15JAN02)	20-10-2	1600 Mower-Conditioner $\begin{array}{r}150102 \\ \mathrm{PN}=29\end{array}$

Symptom	Problem	Solution
	Knife is bent.	Remove or straighten knife. (See Remove Knives and Install Knives in this section.)
	Knife drive case mounting loose.	Tighten mounting bolts.
Excessive knife drive noise	Knife or guards bent.	Straighten knife and align guards. (See Install Regular or Non-Clog Guards in this section.)
	Knife drive case loose.	Tighten mounting bolts.
	Loose or worn knife head pin.	Tighten or replace pin. Check knife head bearing. (See Recondition Knife Head and Install Knives in this section.)
	Knife drive arm loose.	Tighten nut securing arm to knife drive case. (See Install Knife Drive Case in this section.)
Knife Plugging	Platform drive belt slips.	Adjust belt tension. Replace if burned. (See Adjust Platform Drive Belt in Section 30.)
	Dull or broken knife sections.	Sharpen or replace. (See Sharpen Knife Sections in this section.)
	Bent, broken or worn guard.	Replace. (See Install Regular or Non-Clog Guards in this section.)
	Improper platform float spring adjustment.	Adjust float springs. (See Adjust Platform Float in Section 30.)
	Improper hold-down adjustment.	Adjust hold-downs. (See Adjust Regular or Non-Clog Knife Hold-Downs in this section.)
	Improper reel adjustment.	Adjust reel and cam. (See Adjust Reel and Adjust Reel Cam in Section 30.)
Knife gumming	Juice buildup due to cutting operation.	Periodically clean knife with water.
Ragged and uneven cutting of crop	Worn, damaged, or broken knife sections or guards.	Check and replace all worn and broken parts on cutterbar. (See Install Regular or Non-Clog Guards in this section.)
	Bent knife, causing binding of cutting parts.	Straighten bent knife. Check guard alignment and align if necessary. (See Install Regular or Non-Clog Guards in this section.)
		Continued on next page
TM1474 (15JAN02)	20-10-3	1600 Mower-Conditione $\mathrm{PN}=3$

$\left.\begin{array}{|lll}\hline \text { Symptom } & \text { Problem } & \begin{array}{l}\text { Solution }\end{array} \\ & \begin{array}{l}\text { Hold-downs worn or not adjusted } \\ \text { to permit knife to work freely. }\end{array} & \begin{array}{l}\text { Adjust or align hold-downs so knife will work } \\ \text { freely but still keep knife sections from lifting } \\ \text { off guards. (See Adjust Regular or Non-Clog } \\ \text { Knife Hold-Downs in this section.) }\end{array} \\ \hline\end{array} \quad \begin{array}{l}\text { Looseness between knife back } \\ \text { and guard. }\end{array} \quad \begin{array}{l}\text { Adjust hold-downs so knife back is snug to } \\ \text { guard. (See Adjust Regular or Non-Clog } \\ \text { Knife Hold-Downs in this section.) }\end{array}\right\}$

Symptom	Problem	Solution
	Foreign objects on cutterbar.	Disengage tractor PTO and stop engine. After moving parts are completely stopped, remove foreign objects.
	Broken knife sections.	Replace. (See Replace Knife Sections in this section.)
	Worn knife back causes knife to ride up.	Check wear. Replace knife back if necessary. (See Remove Knives and Install Knives in this section.)
	Worn guards cause knife to ride up.	Check wear bar on guard. Replace if necessary. (See Install Regular or Non-Clog Guards in this section.)
	Worn hold-downs allow knife to ride up.	Check hold-downs at front and rear. Adjust or replace as necessary. (See Adjust Regular or Non-Clog Hold-Downs in this section.)
Ragged cut in center	Worn end sections.	Sharpen or replace end sections. (See Sharpen Knife Sections and Replace Knife Sections in this section of manual.)
Down crop left uncut	Reel speed too slow.	Speed up reel. (See Adjust Reel Speed in Section 30.)
		Add 5th or 6th reel bats.
	Ground speed too fast.	Slow down.
	Very heavy crop.	Cut less than full width of platform.
	Reel teeth not reaching down crop.	Adjust top link for steeper guard angle. (See Adjust Platform Guard Angle in Section 30.)
Long stubble	Gauge shoes set too high.	Lower gauge shoes. (See Adjust Gauge Shoes in Section 30.)
	Guard angle too flat.	Increase guard angle. (See Adjust Platform Guard Angle in Section 30.)
Excessive gap between guard and section	Gap is in one localized area of the cutterbar.	Sight down the guards at the tips and trash bar area to check for bent guards or a bent sill and runner. If guards are bent, replace them. If sill and runner is bent, use cutterbar straightening tool to straighten the sill and runner with the guards in place. In area where sill and runner are bent, model guards so trash bars align with each other. (See Use
		Continued on next page
TM1474 (15JAN02)	20-10-5	1600 Mower-Conditioner $\mathrm{PN}=32$

Symptom

Problem

Gap is significantly greater at the tip of the section than at the rear on several sections.

Gap is localized to only one guard.

Gap is localized to only one guard, and there is no difference in height of trash bar between adjacent guards.

Gap is in the 2nd, 3rd, 4th, and 5th points from the right or left-hand end.

Solution

Cutterbar Straightening Tool in this section, Group 15.)

Check perpendicularity of the knife head bearing by removing knife head pin. Reset hold-down clearance with knife head pin removed. If this eliminates the problem, replace the knife or bend the head.

Look for a difference in height of the trash bar between adjacent guards. If there is a difference, this indicates a problem in the individual guard or its mounting surface. Check for a burr in the mounting surface. On right-hand cutterbar, check for a gap between the shim and sill. If there is no problem with the mounting surfaces, replace the guard.

Check the knife to see if the section is bent up.

Check to see if the half guard is holding the knife up. Look for a difference in height of the trash bar area or loosen the bolt on the half guard. Replace the guard if it is bad. If the guard is not bad, check the divider to see if it forces the half guard up when the two bolts into the knife drive gear case are tightened. If the divider forces the guard up, try loosening all bolts in the divider and tightening the two in the knife drive case mounting first. If this does not correct the problem, install washer between the divider and runner.

Check to see if there is a gap between the knife head and the knife drive arm. If there is less than 2 mm (0.079 in .), use a 1.22 m (4 ft) or longer straight edge to check the bottom of the runner for straightness. The runner can cause knife gap problems if it is high at the outside end. If the runner measures 3 mm (0.12 in .) high or more on the outside end, correct the problem in the platform frame. The sill and runner can be bent with the guards in place using a cutterbar straightening tool.
Symptom
Problem

Solution

Remove guards with excess gap. Check the mounting surfaces for any burrs or weld spatter. On the right-hand side, check for gap between shim and runner. If no problems are found in the mounting surfaces, replace these guards.

REMOVE KNIVES

A
CAUTION: To reduce risk of personal injury, always wear gloves when handling knives, and stand to the rear when removing or installing the knife.

NOTE: On non-clog cutterbar, it may be necessary to loosen adjusting clips.

1. Move knife to outer end of stroke.

2. Remove clamp bolt (A).
3. Fit a screwdriver into small groove in connecting pin
(B) and pry up on connecting pin (B) until knife is free.
4. Pull knife to remove from cutterbar.

INSTALL KNIVES

ACAUTION: To reduce risk of personal injury, always wear gloves when handling knives, and stand to the rear when removing or installing the knife.

1. Slide knife into place.

IMPORTANT: For proper assembly of the pin in the knife head bearing, locate the pin in the drive arm as indicated.

2. Insert drive pin (A) through drive arm into knife head.
3. With pin installed and clamp bolt loose, measure distance X when knife arm is in its inward stroke, then set distance Y to corresponding value on chart.
4. Secure with clamp bolt (B) and nut. Tighten to 160 lb-ft ($217 \mathrm{~N} \cdot \mathrm{~m}$)
5. For more efficient cutting as parts wear, the hold-downs may need adjusting. (See adjusting Non-Clog Knife Hold-Downs and Regular Knife Hold-Downs.)

DIMENSIONS

X Y

```
0 to 1/8 in. (3 mm) . . . . . . . . . . . . . 1/2 in. (12.5 mm)
1/4 in. (6 mm) . . . . . . . . . . . . . . . . 3/8 in. (9.5 mm)
3/8 in. (9.5 mm) . . . . . . . . . . . . . . 1/4 in. (6 mm)
```


TIME KNIVES

1. Rotate sheave (A) to the left until knife drive arm (B) moves to the inward position of the stroke.
2. On opposite side of platform, remove knife drive belt (C). (See Replacing Knife Drive Belt in this section.)
3. Rotate sheave (D) to the right until knife drive arm (B) moves to the inward position of the stroke.

NOTE: In Section 30, see the following:

- Replace Left Drive Belt
- Replace Right Drive Belt
- Align Knife Drive Belt
- Adjust Knife Drive Belt

4. Install knife drive belt.

NOTE: The knife strokes will be opposite each other when knives are correctly timed.
A-Sheave
B—Arm
C-Belt
D-Sheave

Right Side

Left Side

INSTALL REGULAR GUARDS ON CUTTERBAR SN —915000

Right-Hand End of Cutterbar - 14 Ft (4.3m)

IMPORTANT: Assemble cutterbar as illustrated. Failure to do so may cause machine damage.

1. Remove all guards and hold-downs.
2. In first hole on right-hand end of cutterbar, install a single guard (A), washer (B), 7/16 $\times 1-1 / 2$ in.
round-head bolt (C), and lock nut. Tighten to 54-75 $\mathrm{N} \cdot \mathrm{m}$ (39-55 lb-ft).

NOTE: A single guard is made by splitting a two prong guard (without wear bar) and removing the center crossbars.
3. In the first hole on the left-hand end of cutterbar, install a single guard (D), $7 / 16 \times 1-1 / 2$ in. round-head bolt (E), and lock nut. Tighten to $54-75 \mathrm{~N} \cdot \mathrm{~m}$ (39 to $55 \mathrm{lb}-\mathrm{ft})$.
4. Install two guards (WITHOUT WEAR BARS) (F) in the next four holes on each end of cutterbar. Do not tighten.
5. Install regular guard (with wear bar) (G) in remaining cutterbar holes, except for the middle four holes. In these four holes, install two non-clog guards (H). Do not tighten.
6. Install hold-down clamp (I) and clip (J) in third and fourth holes from right-hand end and left-hand end. Skip two holes and install hold-down clamp (K) and clip (L). Fasten with $7 / 16 \times 2-3 / 4 \mathrm{in}$. round head bolts and nuts.
7. Skip two holes between all remaining hold-down clamps and clips on right-hand side and left-hand side of cutterbar.
8. At the two holes in the center of cutterbar, install washer (M) between cutterbar and hold-down on the right-hand side. Install hold-down (N) and clips (O).

IMPORTANT: To insure good guard alignment, guards must be pushed against cutterbar and held while tightening bolts. Tighten to 61-68 N-m (45-50 lb-ft). If guards are not aligned, cutterbar will not wear evenly.

9. Check vertical guard alignment by placing a line from the far left guard to a point 3 mm (0.1 in .) above the far right guard. Guards on left-hand end of cutterbar are to be within 3 mm (0.1 in .) above or below line. Guards on right-hand end are to be from flush to 6 mm (0.2 in .) below line. Straighten cutterbar if out of alignment.

IMPORTANT: Cutterbar must be straight or it will cause an excessive wear of guards and a poor cutting performance.
10. Install knives. (See Install Knives in this section.)
11. Install clips (L). Center left and right-hand knives on hold-downs.
12. Insert 0.13 mm (0.005 in .) feeler gauge between hold-downs (K and I) and knife section. Adjust hold-down clips so that a $44.5 \mathrm{~N}(10 \mathrm{lb})$ pull will remove the feeler gauge.
13. Move left and right-hand knives all the way in (with center sections overlapping) and set center hold-down so that a 44.5 N (10 lb) pull will remove the 0.13 mm (0.005 in .) feeler gauge.

> IMPORTANT: When adjusting center hold-down, make sure the end of the right and left-hand knife sections are overlapping in the center of cutterbar. If sections are not overlapping, damage to cutting components may occur.
14. Move knife in until inside tip of section is just above outside edge of ledger area of guard. Maximum allowable gap between knife sections and guards is 0.76 mm (0.030 in .) when measured between the ledger area of the guard and the bottom of the section. If gap is excessive, see the troubleshooting section for help to identify and correct the problem.
15. Oscillate knife by hand to be sure parts are free to move. Run machine for 2 or 3 minutes to be sure knife sections are not heating or binding. Correct any problems.

INSTALL NON-CLOG GUARDS ON CUTTERBAR SN -915000

IMPORTANT: Assemble cutterbar as illustrated. Failure to do so may cause machine damage.

1. Remove all guards and hold-downs.
2. In first hole on right-hand end of cutterbar, install a single guard (A), washer (B), $7 / 16 \times 1-1 / 2 \mathrm{in}$.
round-head bolt (C), and lock nut. Tighten to 54-75 $\mathrm{N} \cdot \mathrm{m}(39-55 \mathrm{lb}-\mathrm{ft})$.

NOTE: A single guard is made by splitting a two prong guard (without wear bar) and removing the center crossbars.
3. Install two non-clog guards (WITHOUT WEAR BARS) (D) in the next four holes on each end of cutterbar. Fasten with one $7 / 16 \times 1-3 / 4 \mathrm{in}$. round-head bolt (E), and lock nut, and three 7/16 x 2-3/4 in. round head bolts. Do not tighten.
4. In first hole on the left-hand end of cutterbar, install a single guard (F). Fasten with $7 / 16 \times 1-1 / 2 \mathrm{in}$. round-head bolt (G), and lock nut. Tighten to 54-75 $\mathrm{N} \cdot \mathrm{m}$ (39 to $55 \mathrm{lb}-\mathrm{ft}$).
5. Install two non-clog guards (without wear bar) (H)
in the next four holes. Fasten with one $7 / 16 \times 1-3 / 4$ in. round-head bolt (I) and lock nut, and three $7 / 16 \mathrm{x}$ 2-3/4 in. round-head bolts. Do not tighten.
6. Install non-clog guards (with wear bar) (J) in remainder of cutterbar holes. Do not tighten.
7. At the two holes in the center of cutterbar, install a washer (K) between the hold-down and cutterbar on the right side to level the hold-down. Install hold-down (L).
8. Install hold-downs (M) starting in the third hole from the right-hand end and ending in the third hole from the left-hand end.
9. Install regular nuts (N) on all $7 / 16 \times 2-3 / 4 \mathrm{in}$. round-head bolts after high arch hold-downs are installed.
10. Check vertical guard alignment by placing a line from the far left guard to a point 3 mm (0.1 in .) above the far right guard. Guards on left-hand end of cutterbar are to be within 3 mm (0.1 in .) above or below line. Guards on right-hand end are to be from flush to 6 mm (0.2 in .) below line. Straighten cutterbar if out of alignment.

IMPORTANT: Cutterbar must be straight or it will cause an excessive wear of guards and a poor cutting performance.

IMPORTANT: To insure good guard alignment, guards must be pushed against cutterbar and held while tightening bolts. Tighten to $61-68 \mathrm{~N} \cdot \mathrm{~m}$ (45-50 $\mathrm{lb}-\mathrm{ft})$. If guards are not aligned, cutterbar will not wear evenly.
11. Install knives. (See Install Knives in this section.)
12. Install clips (O). Tighten lock nuts (P). Insert 0.13 mm (0.005 in .) feeler gauge between the hold-downs (K and I) and the knife section.
13. Adjust hold-down clips so that a 44.5 N (10 lb) pull will remove the feeler gauge.

IMPORTANT: When adjusting center hold-down, make sure the end of the right-hand and left-hand knife sections are overlapping in center of cutterbar. If sections are not overlapping, damage to cutting components may occur.
14. Oscillate knife by hand to be sure parts are free to move. Run machine for 2 or 3 minutes to be sure knife sections are not heating or binding. Correct any problems.

INSTALL REGULAR GUARDS ON CUTTERBAR SN 915001—

IMPORTANT: Assemble cutterbar as illustrated. Failure to do so may cause machine damage.

1. Remove both cutterbar knives. (See Remove Knives in this section.)

IMPORTANT: To insure good guard alignment, guards must be pushed against cutterbar and held while tightening bolts. Tighten to $61-68 \mathrm{~N} \cdot \mathrm{~m}$ (45-50 lb-ft. If guards are not aligned, cutterbar will not wear evenly.

NOTE: A single guard is made by splitting a regular guard, without wear bar, (K) and removing the center crossbars.
2. LOCATIONS 1 - In first hole on RIGHT-HAND end and LEFT-HAND end of cutterbar, install a single guard (S) or (T), 7/16 x 1-1/2 in. round-head bolt (N), and lock nut (A). Tighten to $54-75 \mathrm{~N} \cdot \mathrm{~m}$ (39-55 $\mathrm{Ib}-\mathrm{ft})$.
3. LOCATIONS 2 - Install two regular guards (WITHOUT WEAR BARS) in the next four holes on each end of cutterbar. Fasten guards with $7 / 16 \mathrm{x}$ $1-1 / 2$ round-head bolts (N) and lock nuts (A) through holes 1 and 4.
4. Install strap (H) with plow bolt (I), and hold-down without tabs (E) in holes 3 and 4 from each end.
Fasten with $7 / 16 \times 1-3 / 4 \mathrm{in}$. round head bolts (O) and lock nuts (A).
5. LOCATIONS 4 - Install two regular guards (WITH WEAR BARS) in the next four holes on each end of cutterbar. Fasten guards with $7 / 16 \times 1-1 / 2$ round-head bolts (N) and lock nuts (A) through holes 1 and 4.
6. Install strap (H) with plow bolt (I), and hold-down with tabs (G) in holes 2 and 3 . Fasten with $7 / 16 \times$ $1-3 / 4$ in. round head bolts (O) and lock nuts (A).

NOTE: Hold-down (R), right of LOCATION 3, is installed directly over the guard.
7. Repeat procedure in steps 5 and 6 for the remaining holes in LOCATIONS 4.
8. LOCATION 3 - Position one $15 / 32 \times 1-1 / 8 \times 0.120$ washer over the right hole. Install Non-Clog guard (WITH WEAR BAR) (L), $7 / 16 \times 2-3 / 4$ round-head bolts (P), high arch hold-down (F), and nuts (D). Install high arch hold-down clips (C) and lock nut (A). Do not tighten lock nuts at this time.
9. Install regular hold-down clips (B) and lock nuts (A) in LOCATIONS 2 and 4. Do not tighten lock nuts at this time.
10. Check vertical guard alignment by placing a line from the far left guard to a point 3 mm (0.1 in .) above the far right guard. Guards on left-hand end of cutterbar are to be within 3 mm (0.1 in .) above or below line. Guards on right-hand end are to be from flush to 6 mm (0.2 in .) below line. Straighten cutterbar if out of alignment.
11. Install knives. (See Install Knives in this section.)

IMPORTANT: When adjusting center hold-down, make sure the end of the right-hand and left-hand knife sections are overlapping in center of cutterbar. If sections are not overlapping, damage to cutting components will occur.

NOTE: See Time Knives in this section

12. LOCATIONS 2-4 - Move left and right-hand knives all the way in (with center sections overlapping). Insert 0.13 mm (0.005 in .) feeler guage between hold-down (E-G) and knife section. Adjust hold-down clips so a $44.5 \mathrm{~N}(10 \mathrm{lb})$ pull will remove the feeler gauge.
13. Move knife in until inside tip of section is just above outside edge of ledger area of guard. Maximum allowable gap between knife sections and guards is 0.76 mm (0.030 in .) when measured between the ledger area of the guard and the bottom of the section. If gap is excessive, refer to Troubleshooting section to identify and correct the problem.
14. Oscillate knife by hand to be sure parts are free to move. Run machine for 2 or 3 minutes to be sure knife sections are not heating or binding. Correct any problems.

INSTALL REGULAR GUARDS ON CUTTERBAR SN 915001—

A—Lock Nut
B—Hold-Down Clip
C—High Arch Hold-Down
Clip
D—Nut
E—Hold-Down Without Tabs
F—High Arch Hold-Down
G—Hold-Down With Tabs
H—Strap

B-Hold-Down Clip
C—High Arch Hold-Down Clip
D-Nut
E—Hold-Down Without Tabs
F—High Arch Hold-Down
H—Strap

I-7/16 x 1-1/4 in. Plow Bolt
$\mathrm{J}-15 / 32 \times 1-1 / 8 \times 0.120 \mathrm{in}$. Washer
K—Regular Guard Without Wear Bar - 12-14-16 ft. - 4 used

L-Non-Clog Guard With Wear Guard

- 12-14-16 ft. - 1 used

M—Regular Guard With Wear Bar

- 12 ft - 19 used
- 14 ft - 23 used
- 16 Ft - 27 used

N-7/16 x 1-1/2 in. Round Head Bolt
O—7/16 x 1-3/4 in. Round Head Bolt

P—7/16 x 2-3/4 in. Round Head Bolt
Q—Knife Section
R-Hold-Down (Location Reference)
S—Left Half of Regular Guard Without Wear Bar
T-Right Half of Regular Guard Without Wear Bar

INSTALL NON-CLOG GUARDS ON CUTTERBAR SN 915001—

A—Lock Nut
B—High Arch Hold-Down
\quad Clip
C—Nut
D—Left-Hand Notched High
\quad Arch Hold-Down
E—Right-Hand Notched High
\quad Arch Hold-Down

F—High Arch Hold-Down	J—7/16 $\times 1-1 / 2$ Round Head
G—15/32 $\times 1-1 / 8 \times 0.120 \mathrm{in}$.	Bolt
Washer	K—7/16 $\times 2-3 / 4$ Round Head
H—Non-Clog Guard Without	Bolt
Wear Bar	L—Knife Section
- 12-14-16 ft. -4 used	M—Regular Guard Without
——Non-Clog Guard With	Wear Bar
Wear Bar	
- 12 ft. - 20 used	
- 14 ft. 24 used	
- 16 ft. -28 used	

N—Left Half of Regular Guard Without Wear Bar O—Right Half of Regular Guard Without Wear Bar

INSTALL NON-CLOG GUARDS ON CUTTERBAR SN 915001—

IMPORTANT: Assemble cutterbar as illustrated. Failure to do so may cause machine damage.

1. Remove both cutterbar knives. (See Remove Knives in this section.)

IMPORTANT: To insure good guard alignment, guards must be pushed against cutterbar and held while tightening bolts. Tighten to $61-68 \mathrm{~N} \cdot \mathrm{~m}$ (45-50 lb -ft). If guards are not aligned, cutterbar will not wear evenly.

NOTE: A single guard is made by splitting a regular guard (M), without wear bar, and removing the center crossbars.
2. LOCATIONS 1 - In first hole on RIGHT-HAND and LEFT-HAND end of cutterbar, install a single guard (N) or (O), $7 / 16 \times 1-1 / 2 \mathrm{in}$. round-head bolt (J), and lock nut (A). Tighten to $54-75 \mathrm{~N} \cdot \mathrm{~m}$ (39— $55 \mathrm{lb}-\mathrm{ft})$.

NOTE: High arch hold-downs (D-F) are installed directly over the guards.
3. LOCATIONS 2 - Install two non-clog guards (WITHOUT WEAR BARS) (H) in the next four holes on each end of cutterbar. Install high arch hold-down (F), $7 / 16 \times 2-3 / 4$ round-head bolts (K), and nuts (C) in holes 4 and 5 from each end.

- RIGHT-HAND END - Install RIGHT-HAND NOTCHED high arch hold-down (E), $7 / 16 \times 2-3 / 4$ round-head bolts (K), and nuts (C) in holes 2 and 3 from the right end.

[^1]
IMPORTANT: Damage to cutting components will occur if correct notched high arch hold-down is not used.

4. LOCATIONS 4 - Install non-clog guards (WITH WEAR BARS) (I), high arch hold-downs (F), 7/16 x 2-3/4 round-head bolts (K), and nuts (C) in the next two holes from each end. Repeat this procedure for the remaining holes in LOCATIONS 4.
5. LOCATION 3 - Position one $15 / 32 \times 1-1 / 8 \times 0.120$ washer over the right hole. Install non-clog guard (WITH WEAR BAR) (I), $7 / 16 \times 2-3 / 4$ round-head bolts (K), high arch hold-down (F), and nuts (C).
6. Install high arch hold-down clips (B) and lock nuts (A). Do not tighten lock nuts at this time.
7. Check vertical guard alignment by placing a line from the far left guard to a point 3 mm (0.1 in .) above the far right guard. Guards on left-hand end of cutterbar are to be within 3 mm (0.1 in .) above or below line. Guards on right-hand end are to be from flush to 6 mm (0.2 in .) below line. Straighten cutterbar if out of alignment.
8. Install knives. (See Install Knives in this section.)

IMPORTANT: When adjusting center hold-down, make sure the end of the right-hand and left-hand knife sections are overlapping in center of cutterbar. If sections are not overlapping, damage to cutting components will occur.

NOTE: See Time Knives in this section
9. LOCATIONS 2-4 - Move left and right-hand knives all the way in (with center sections overlapping). Insert 0.13 mm (0.005 in .) feeler guage between hold-down (D-F) and knife section. Adjust hold-down clips so a $44.5 \mathrm{~N}(10 \mathrm{lb})$ pull will remove the feeler gauge.
10. Move knife in until inside tip of section is just above outside edge of ledger area of guard. Maximum allowable gap between knife sections and guards is 0.5 mm (0.020 in .) when measured between the ledger area of the guard and the bottom of the section. If gap is excessive, refer to Troubleshooting section to identify and correct the problem.
11. Oscillate knife by hand to be sure parts are free to move. Run machine for 2 or 3 minutes to be sure knife sections are not heating or binding. Correct any problems.

ADJUST REGULAR KNIFE HOLD－DOWNS

Knife hold－downs（A）keep knife sections（B）from lifting off guards（C），allowing the knife to slide without binding．

IMPORTANT：Overtightening the hold－downs will cause rapid wear on hold－downs and knife sections．Wear is increased if operating in sandy or muddy conditions．

1．Center left and right－hand knives on hold－downs．
2．Insert $0.13 \mathrm{~mm}(0.005 \mathrm{in}$ ．）feeler gauge between the hold－down（A）and the knife section（B）．Adjust hold－down clips so a 44.5 N （10 lb）pull removes the feeler gauge．

3．Move left and right－hand knives all the way in（with center sections overlapping）and set center hold－down so that a $44.5 \mathrm{~N}(10 \mathrm{lb})$ pull will remove the 0.13 mm （0．005 in．）feeler gauge．

4．Move knife in until inside tip of section is just above outside edge of ledger area of guard．Maximum allowable gap between knife sections and guards is 0.76 mm （ 0.030 in ．）when measured between the ledger area of the guard and the bottom of the section．If gap is excessive，see the Troubleshooting section for help to identify and correct the problem．

A－Regular Hold－Down
B—Knife Section
C－Regular Guard
D－Lock Nut
E—Thick Shim
F－Adjustment Clip

ADJUST NON-CLOG KNIFE HOLD-DOWNS

Knife hold-downs (A) keep knife sections (B) from lifting off guards (C), allowing the knife to slide without binding.

IMPORTANT: Overtightening the hold-downs will cause rapid wear on hold-downs and knife sections. Wear is increased if operating in sandy or muddy conditions.

1. Move left and right-hand knives all the way in to center on hold-downs.
2. Insert $0.13 \mathrm{~mm}(0.005 \mathrm{in}$.) feeler gauge between hold-down (A) and knife section (B). Adjust hold-down clip (G) so that a $44.5 \mathrm{~N}(10 \mathrm{lb})$ pull will remove the feeler gauge.
3. Maximum allowable gap between knife sections and guards is $0.51 \mathrm{~mm}(0.020 \mathrm{in}$.) when measured between the ledger area of the guard and the bottom of the section. If gap is excessive, see the troubleshooting section for help to identify and correct the problem.

A-High Arch Hold-Down
B-Knife Section
C-Non Clog Guard
D-Lock Nut
E-Thin Shim
F-Regular Nut
G-Adjustment Clip

SN - 915000

SN 915001 -

USE CUTTERBAR STRAIGHTENING TOOL

Model guards where sill and runner are bent so trash bars will align with each other.

To make cutterbar straightening tool (A), see Fabricated Tools in this section, Group 5.

SHARPEN KNIFE SECTIONS

IMPORTANT: Do not sharpen the knife too rapidly. It will cause the steel in the cutting edge to burn. This is indicated by a blue discoloration.

Keep the knife straight and sharp, with sections firmly riveted to knife back.

When sharpening the knife, restore the original shear angle and bevel of 20 to 35 degrees.

A—New sections-proper bevel and angle for good work.
B-Improperly ground section; narrow bevel and wrong angle which changes the angle of shear.
C-Sections properly ground. Even after repeated grinding proper bevel and angle are retained.
D-Sections ground off center, destroying the register of blade in guard.

REPLACE BOLT-ON KNIFE SECTIONS

1. Install each new section (A) with two rib neck bolts and lock nuts (B). Install flat side of nut against knife section.
2. Drive bolts in from underneath with a hammer (C). Each bolt must be driven tight against knife back (D).
3. Tighten nuts to $8 \mathrm{lb}-\mathrm{ft}(11 \mathrm{~N} \cdot \mathrm{~m})$.

REPLACE CENTER KNIFE SECTIONS

20
15
14

A-Left-Hand Knife

B—Bottom Countersunk
C-Right-Hand Knife
D-Top Countersunk Section

Knives on Inward Stroke

IMPORTANT: Make sure knife sections are installed correctly. If sections are not correctly installed, damage to cutting components will occur.

NOTE: If the head of the rivet is not flush with the surface of the section, it maybe necessary to lightly file the head of the rivet.

1. On the left-hand knife (A), install the two bottom countersunk sections (B) with flat head rivets.
2. On the right-hand knife (C), install the three top countersunk sections (D) with flat head rivets.

REPLACE RIVETED KNIFE SECTIONS

A
CAUTION: Wear gloves when working with knife to prevent injury.

NOTE: Remove knife from cutterbar to replace knife head.

1. Replace worn or broken knife sections (A) with knife in cutterbar.

IMPORTANT: Striking rivet from front can cause knife
 section misalignment.
2. Strike rivet (B) from side with chisel and heavy hammer.
3. Remove rivet with TY5011 rivet tool (A).

EX,1474,2015,K -19-04MAY93
4. Position new knife section.
5. Insert rivet from bottom of knife.
6. Secure section with TY5011 rivet tool (A).

REPLACE KNIFE HEAD

1. Remove knife from cutterbar. (See Remove Knife in this section.)
2. Remove knife head (A) using hammer, chisel and TY5011 rivet tool.
3. Reinstall head using rivet tool.

RECONDITION KNIFE HEAD

1. Remove knife from cutterbar. (See Remove Knife in this section.)
2. Pry seal (A) from knife head.

NOTE: Do not replace bearing unless necessary because it is difficult to remove.
3. Check if knife head bearing (B) is rough or loose.
4. Pry needles from caged bearing.
5. Cut several notches in upper lip of caged bearing race.

NOTE: Do not damage bore.
6. Pry outer race away from front or rear surface of bore in knife head (C) to loosen race.
7. Punch race out from bottom of knife head.
8. Press needle bearing into knife head with 1-1/4 in. (A) and 1-3/4 in. (B) driver disks. Position top edge of bearing flush to $6.6 \mathrm{~mm}(0.26 \mathrm{in}$.) below step in knife head.

NOTE: Do not bottom bearing in knife head.
9. Position seal in knife head bore with lips facing up.

Press seal flush to top of knife head using 1-1/4 in. and 1-1/2 in. (C) driver disks.
10. Coat bearing and seal with grease.

REMOVE KNIFE DRIVE CASE

A
CAUTION: Lower both cylinder stops when working on machine. Failure to do so can result in personal injury.

1. Raise platform, lower cylinder stops (A), and place shop stand under platform.

2. Loosen nut (A) and move idler to release belt tension.

NOTE: Left-hand side illustrated.
3. Remove belt (B).
4. Move knife (C) to outer end of stroke.

8. Use special tool JDO-1 (A) to remove drive arm (B). Strike tool firmly until arm comes loose.

9. Loosen four knife drive case cap screws (A) to ease bench disassembly of knife drive case.

NOTE: Knife drive case can be removed leaving support (B) in position if bearing or seal repair is not needed. Oil will leak out when case is removed.
10. Remove divider shoe (C).
11. Remove three remaining cap screws attaching knife drive support to platform frame.
12. Remove knife drive case (D) and support.

```
A-Cap Screws
B-Support
C-Divider Shoe
D—Knife Drive Case
```


DISASSEMBLE KNIFE DRIVE CASE

1. Drain oil.
2. Loosen nut (A) and use puller to loosen gear (B).
3. Remove gear from shaft.

NOTE：Insure that seal is not damaged by shaft splines．
4．Remove support（A）from knife drive case（B）．
NOTE：Do not damage sealing surface on aluminum cover or seal．

5．Remove knife drive case cover（C）．
6．Remove yoke and knife drive shaft assembly（D）by tilting yoke and sliding from knife drive case．

A－Support

B－Knife Drive Case
C－Cover
D－Knife Drive Shaft Assembly

IMPORTANT：When holding the knife drive shaft（A） in the vise，grip the knife drive shaft on the raw casting at points (B) on the opposite side of the housing（C）from the stake nut（D）．

7．Position the knife drive assembly in the vise as shown．

IMPORTANT：When loosening the stake on the stake nut，use care not to damage the threads on the knife drive shaft（A）．

NOTE：Use large adjustable wrench or fabricated tool（E） to remove stake nut．

8．Loosen stake，remove and discard stake nut（D）．

A－Knife Drive Shaft
B－Gripping Points
C－Housing
D－Stake Nut
E－Fabricated Tool

IMPORTANT: When removing knife drive shaft (C), use care not to damage the machined area (A) or threads (B).

NOTE: When knife drive shaft (C) is pressed out of the housing assembly (D), bearing (E) will remain in the housing assembly.

20 9. Press knife drive shaft (C), at point (F), out of housing assembly (D). Discard bearing (E).
10. Remove and discard remaining bearing on knife drive shaft (C)

Note: If the yoke (D) is damaged, discard complete assembly at this point. Proceed to INSPECT KNIFE DRIVE CASE in this Section and Group.
11. Using a hammer and punch, drive out and discard both bearing cups (A).
12. Use an acetylene torch or bandsaw and cut the housing (B) in half at locations (C).
13. Remove and discard both halves of the housing.

```
A-Bearing Cups
B-Housing
C-Location
D-Yoke
```


INSPECT KNIFE DRIVE CASE

1. Wash all parts thoroughly in clean solvent and dry.
2. Inspect all parts for wear or damage.
3. Check for irregular wear patterns, nicks, etc.
4. Check gear case bearing for roughness. Be certain bearing rotates freely and all rollers are in place.
5. Inspect spline, bearing surfaces, and threads on knife drive shaft.
6. If knife drive shaft assembly has not been removed from the yoke, rotate knife drive shaft and check bearings for roughness and check that all rollers are in place.
7. Inspect spline and bushings of yoke shaft.
8. Replace damaged parts.
9. Check bearings (A) in knife drive case support (B) for damage or roughness.
10. Check seal (C) and O-Ring (D) for nicks or wear.

NOTE: Press against flat (stamped) side of bearings for ease of removal.
11. Replace damaged parts.

> A-Bearings
> B-Support
> C-Seal
> D-O-Ring

12. Check sealing surface of cover (A) for nicks.
13. Check bearing (B) for roughness.
14. Check seal (C) for nicks or damage.

ASSEMBLE KNIFE DRIVE CASE

A-Bearing Cups
Bearing Cones
IMPORTANT: Do not reuse housing (C), spindles (H), and plugs (F) if housing is removed from yoke (I)
If replacing housing (C), order new
If replacing knife drive shaft (D), order new stake nut (E).
If replacing bearing cones (B) and cups, order new stake nut (E).
If replacing yoke (I), order new bearing cones (B), housing (C), and nut (E).

IMPORTANT: Housing (C) is received from repairs

 with bearing cups in place. Do not reuse bearing cones (B) and (D) with new housing.3. Press bearing cone (B) on knife drive shaft (A) as shown.
4. Position knife drive shaft with bearing in housing (C).
5. Press bearing cone (D) on knife drive shaft.

A-Knife Drive Shaft
B-Bearing Cone
C-Housing
D-Bearing Cone

NOTE: Do not strike end of knife drive shaft with metal hammer when adjusting bearing.
6. Tighten stake nut (A) on knife drive shaft (B) to obtain $0.33-0.56 \mathrm{~N} \cdot \mathrm{~m}(3-5 \mathrm{lb}-\mathrm{in})$ rolling torque.

IMPORTANT: Do not clamp finished surface (C) when positioning the housing (D) in the vise.
7. Reposition knife drive assembly in the vise, clamping the housing (D).
8. Install a 3/4-in. nut (E) on threaded end of knife drive shaft.
9. Check rolling torque with torque wrench (F).
10. Adjust stake nut until desired rolling torque is obtained.

NOTE: There is a recess (G) in the threads on the knife drive shaft (B). Stake the stake nut (A) at the recess.
11. Stake the stake nut (A) to the knife drive shaft (B).

A-Stake Nut

B—Knife Drive Shaft
C-Finished Surface
D-Housing
E-Nut 3/4-in.
F-Torque Wrench
G-Recess

IMPORTANT: Place plastic plugs in housing bore before pressing spindles into bore to prevent chips from falling into bearing.

NOTE: Use fabricated shim (D) to prevent over-pressing spindle (C) into housing, contacting bearing cups.

20 12. Assemble knife drive shaft assembly (A) in yoke (B) with spindles (C).

A-Knife Drive Shaft Assembly
 B-Yoke
 C-Spindle
 D-Shim

E15731 -UN-20SEP88

NOTE: Press on flat (stamped) side of bearing.
13. Press upper bearing into gear case support flush (A) with inside surface. Use 1-5/8 in. and 2-in. driver disks.
14. Press lower bearing into bore to $8.2-9.2 \mathrm{~mm}$ (0.32 - 0.36 -in.) (B) from outside surface.

NOTE: Position seal lip toward inside.
15. Press seal into bore flush to 0.8 mm (0.03 -in.) (C) from outside surface. Use $1-5 / 8 \mathrm{in}$. and 2-1/8 in. driver disks.

Gear Case Support

16．Apply 2.5 mm （ $0.10-\mathrm{in}$ ．）bead of TY15130 sealant around cover（C）inside of bolt circle．

NOTE：Use seal protector over splines．
17．Install cover on knife drive case（B）and tighten bolts to $30-40 \mathrm{~N} \cdot \mathrm{~m}(22-29 \mathrm{lb}-\mathrm{ft})$

18．Fill knife drive case with $0.946 \mathrm{~L}(1 \mathrm{qt})$ of John Deere GL－5 Gear Lubricant．

19．Install support（A）on knife drive case and tighten cap screws to $244-271 \mathrm{~N} \cdot \mathrm{~m}$（180－200 Ib－ft）．

20．Install gear（A），washer，and nut on shaft．
21．Tighten nut（B）to $136-162 \mathrm{~N} \cdot \mathrm{~m}(100-119 \mathrm{lb}-\mathrm{ft})$ ．

INSTALL KNIFE DRIVE CASE

1. Install in reverse order of removal using following special instructions.
2. Tighten five support mounting bolts to $136 \mathrm{~N} \cdot \mathrm{~m}$ (100 $\mathrm{lb}-\mathrm{ft})$.

20 3. Install knife arm (A) and tighten nut (B) to $244 \mathrm{~N} \cdot \mathrm{~m}$ ($180 \mathrm{lb}-\mathrm{ft}$).

NOTE: Be sure chamfer on inside diameter of washer is next to knife arm.
4. Strike rear of arm with hammer to seat arm on tapered shaft.
5. Tighten nut to $244 \mathrm{~N} \cdot \mathrm{~m}$ ($180 \mathrm{lb}-\mathrm{ft}$).
6. Slide knife (A) to midstroke position.
7. Insert drive pin (B) through drive arm (C) into knife head.
8. Install clamp bolt (D), and adjust pin position. (See Install Knives in this section.)
9. Tighten clamp bolt (D) to $190-217 \mathrm{~N} \cdot \mathrm{~m}(140-160$ $\mathrm{lb}-\mathrm{ft})$.

A-Knife

B-Drive Pin
C-Drive Arm
D-Clamp Bolt

IMPORTANT: Overfilling gear case can cause leakage, overheating, and contribute to internal damage.

10. Fill gear case (A) to $64-89 \mathrm{~mm}(2.5-3.5 \mathrm{in}$.) below fill plug. Capacity is $0.946 \mathrm{~L}(1 \mathrm{qt})$. Fill with John Deere GL-5 Gear Lubricant.
11. Insure both knives are fully inward on their strokes for timing. (See Time Knives in this section.)
12. Install timing belt (B).
13. Adjust idler (C) until belt deflects 11.5 mm (0.45 in .) with $45-50 \mathrm{~N}(10-13 \mathrm{lb})$ applied at center of belt span.
14. Tighten idler bolt.

Contents

Group 05-General Information
Platform Description 30-05-1
Platform Drive 30-05-2
Specifications 30-05-3
Torque Values 30-05-3
Special Tools 30-05-4
Group 10—Diagnosing Malfunctions . . . 30-10-1
Group 15-Platform Frame
Replace Gauge Shoes 30-15-1
Remove Platform 30-15-1
Attach Platform 30-15-2
Platform Guard Angle:
Adjust . 30-15-3
Adjust With Electric Guard Angle
Controller 30-15-4
Adjust Platform Float 30-15-5
Adjust Gauge Shoes 30-15-6
Adjust Carrier Frame Height 30-15-7

Group 20-Reel

Remove Reel 30-20-1
Inspect Reel Parts 30-20-4
Install Reel . 30-20-5
Adjust Reel . 30-20-6
Adjust Cam . 30-20-7
Replace Cam Follower Bearings 30-20-7
Replace Reel Teeth in Right and Center Sections 30-20-8
Replace Reel Teeth in Left Section 30-20-9
Adjust Cam Followers 30-20-11

Group 25-Augers

Remove Upper Auger 30-25-1
Remove Lower Auger 30-25-5
Inspect Augers 30-25-7
Install Augers 30-25-8
Adjust Upper and Lower Auger Stripper . . 30-25-10
Adjust Center Auger Stripper 30-25-11
Group 30—Platform DrivesPowershaft:
Remove 30-30-1
Recondition 30-30-1
Install 30-30-3
Recondition Platform Drive Sheave 30-30-4
Remove Platform Cross Shaft 30-30-5
Install Platform Cross Shaft 30-30-6
Recondition Reel Drive Variable Sheave 30-30-7
Adjust Reel Speed 30-30-9
Replace and Adjust Auger Drive Chain 30-30-10
Replace and Adjust Auger Drive ChainTensioner30-30-10
Align Knife Drive Belt 30-30-12
Replace Left Drive Belts 30-30-12
Replace Right Drive Belts 30-30-13
Adjust Knife Drive Belt (Both Sides) 30-30-14
Adjust Reel Drive Belt 30-30-14
Adjust Auger Drive Belt 30-30-15
Adjust Platform Drive Belt 30-30-15
Care of V-Belts 30-30-16

30

Group 05
 General Information

PLATFORM DESCRIPTION

A turnbuckle (A) or electric actuator changes the platform position to adjust guard angle.

The multi-bat reel (B) delivers the crop to the augers. Reel position, speed, finger angle, and the number of bats can be changed to match conditions.

Two augers (C) with adjustable strippers provide unrestricted crop flow to the entire width of the conditioner rolls.

Two float spring assemblies (D) provide platform flotation.

A-Guard Angle Turnbuckle

B-Reel
C-Augers
D-Float Spring

PLATFORM DRIVE

The platform is driven from the left side by a power band belt (A). A V-belt (B) drives the augers, and a timing belt (C) drives the left knife drive case.

A platform cross shaft (D) transmits power to the right timing belt (E) and knife drive case.

The lower auger shaft (F) transmits power to the right side and drives the upper auger with a roller chain (G). The lower auger also drives the reel with a V-belt (H).

A-Platform Drive Belt

B-Auger Drive Belt
C-Left Knife Drive Belt
D-Cross Shaft
E-Right Knife Drive Belt
F-Lower Auger Shaft
G-Auger Drive Chain
H—Reel Drive Belt

SPECIFICATIONS

ITEM	MEASUREMENT	SPECIFICATION
Guards	Angle	6 Degrees to 12 Degrees
Cam Follower	Clearance	3 mm (0.1 in.)
Tooth Pipe	Endplay	0.3-2 mm (0.01-0.08-in.)
Auger Stripper	Clearance	2-4 mm (0.1-0.2-in.)
Carrier Cross Shaft	Endplay	Maximum 1.5 mm (0.06-in.)
Platform Drive Belt	Deflection	$\begin{aligned} & 3.5 \mathrm{~mm}(0.14-\mathrm{in} .) \text { with } \\ & 98-124 \mathrm{~N}(22-28 \mathrm{lb}) \end{aligned}$
Knife Drive Belt	Deflection	$\begin{aligned} & 6.5-16.5 \mathrm{~mm}(0.25-0.65 \mathrm{in} .) \\ & \text { with } 44-58 \mathrm{~N}(10-13 \mathrm{lb}) \end{aligned}$
Auger Drive Belt	Deflection	$\begin{aligned} & 11.5 \mathrm{~mm}(0.45 \mathrm{in} .) \text { with } \\ & 67-84 \mathrm{~N}(15-19 \mathrm{lb}) \end{aligned}$
Auger Drive Chain	Deflection	13 mm (0.5 in.)
Reel Drive Variable Sheave Bearings	Position	Flush to 0.38 mm (0.015 in .) into Bore
EX,1474,3005,D-19		
TORQUE VALUES		
LOCATION	$\mathrm{N} \cdot \mathrm{m}$	(lb-ft)
Reel Teeth	11-24	8-18
Reel Bats	34-60	25-44
Knife Drive Hubs	271-379	200-280
Reel Drive Variable Sheave		
Mounting Bolt	106-174	78-128
Reel Drive Variable Sheave		
Carriage Bolts	48-60	35-44
EX,1474,3005, E-19		
SPECIAL TOOLS		
D01045AA - Driver set used to install bearings in platform drive sheave housing.		

TORQUE VALUES

LOCATION	$N \cdot m$	(lb-ft)
Reel Teeth	11-24	8-18
Reel Bats	34-60	25-44
Knife Drive Hubs	271-379	200-280
Reel Drive Variable Sheave		
Mounting Bolt	106-174	78-128
Reel Drive Variable Sheave		
Carriage Bolts	48-60	35-44

SPECIAL TOOLS

D01045AA - Driver set used to install bearings in platform drive sheave housing.

DIAGNOSING MALFUNCTIONS

Symptom
Unusual platform vibratio
Mud and dirt buildup on
platform
Crop wraps around end of
auger
Crop wraps around
middle of lower auger
Crop wraps on upper
auger
Crop plugs in front of
auger

Reel not feeding properly

Problem
Knife drives out of time.

Cutterbar too low.

Heavy, long stem crop.

Incorrect reel release.

Nicks on auger flighting.

Reel teeth have too much clearance with deck and guards.

Auger drive belt slipping.

Reel drive belt slipping.

Cutterbar plugging.

Reel cannot handle amount of crop coming into platform.

Reel is throwing crop over platform.

Solution

Time the knives. (See Time Knives in Section 20.)

Raise cutterbar using gauge shoes and reduce guard angle. (See Adjust Gauge Shoes and Adjust Platform Guard Angle in this section.)

Adjust strippers at end of augers. (See Adjust Upper and Lower Auger Stripper in this section.)

Adjust center auger stripper. (See Adjust Center Auger Stripper in this section.)

Adjust reel cam. (See Adjust Cam in this section.)

Grind smooth any nicks or irregular areas on auger so crop does not wrap.

Adjust reel position. (See Adjust Reel in this section.)

Check belt and adjust. (See Adjust Auger Drive Belt in this section.)

Check belt and adjust. (See Adjust Reel Drive Belt in this section.)

See Ragged and Uneven Cutting of Crop in Diagnosing Malfunctions in Section 10.

Increase reel speed. (See Adjust Reel Speed in this section.)

Add additional reel bats.
Reduce ground speed to $75-80 \%$ of reel speed.

Decrease reel speed to prevent carryover. (See Adjust Reel Speed in this section.)

Adjust cam. (See Adjust Reel Cam in this section.)

Symptom	Problem	Solution
		Move reel down and back for light crops. (See Adjust Reel in this section.)
	Reel drive belt slipping.	Check belt tension. (See Adjust Reel Drive Belt in this section.)
		Adjust reel and cam. (See Adjust Reel and Adjust Reel Cam in this section.)
Leaf loss or crop damage	Reel speed not coordinated with ground speed.	Change reel drive to coordinate reel speed with ground speed so reel will move material smoothly and evenly. (See Adjust Reel Speed in this section.)
	Ground speed too fast for condition of crop.	Slow down.
Crop carrying over top of reel.	Reel speed too fast.	Reduce reel speed. (See Adjust Reel Speed in this section.)
	Wrong cam angle.	Adjust cam (See Adjust Cam in this section.)
Reel hesitation.	Low hydraulic fluid.	Check and add fluid.
	Auger drive belt slipping.	Check belt and adjust. (See Adjust Auger Drive Belt in this section.)
	Platform drive belt slipping.	Check belt and adjust. (See Adjust Platform Drive Belt in this section.)
	Reel drive belt slipping.	Check belt and adjust. (See Adjust Reel Drive Belt in this section.)
	Heavy, lodged material.	Slow down ground speed.
	Cutterbar plugged.	See Ragged and Uneven Cutting of Crop in Diagnosing Malfunctions in Section 10.
Cam rollers leave cam track	Bat clamp bolts are loose.	Adjust for 3 mm (0.1-in.) clearance between cam follower arm and bracket, and between cam follower arm and cam. Tighten bolts. (See Adjust Cam Followers in this section.)
	Roller not in cam far enough.	Reshim for 3 mm (0.1 -in.) clearance between cam follower and cam. (See Adjust Cam Followers in this section.)
		Remove washers from left-hand reel shaft
		Continued on next page
TM1474 (15JAN02)	30-10-2	1600 Mower-Conditioner $\begin{array}{r}150102 \\ \mathrm{PN}=73\end{array}$

Symptom	Problem	Solution
Cam track and follower bearing failure	Reel speed too fast.	Slow down reel speed. (See Adjust Reel Speed in this section.)
Auger drive chain noise.	Chain worn out and climbing on sprocket teeth.	Replace chain. (See Replace and Adjust Auger Drive Chain in this section.)
	Chains are dry.	Clean and lubricate.
Excessive roller chain noise	Chain too loose.	Adjust to correct deflection. (See Replace and Adjust Auger Drive Chain in this section.)
	Chain too tight.	Adjust to correct deflection. (See Replace and Adjust Auger Drive Chain in this section.)
	Chains are dry.	Clean and lubricate chains.
	Sprockets are worn or out of alignment.	Replace worn sprockets or align sprockets. (See Replace and Adjust Auger Drive Chain in this section.)
	Excessive load on chains.	Avoid overload on drives.
Platform side drafts at angle	Incorrect float spring adjustment.	Adjust float springs. (See Adjust Platform Float in this section.)
	Low tire pressure.	Check tire pressure. (See Checking Tire Inflation in Preparing the Mower Conditioner section of operator's manual.)
	Guard angle too steep.	Adjust guard angle. (See Adjust Platform Guard Angle in this section.)
	Platform is dragging on one end and pulling to that side.	Adjust platform flotation. (See Adjust Platform Float in this section.)
		Adjust gauge shoes. (See Adjust Gauge Shoes in this section.)
Knife drive belt not tracking properly on lower sprocket	Alignment incorrect.	Align sprockets and idler sheave. (See Install Platform Cross Shaft and Align Knife Drive Belt in this section.)
Excessive reel drive belt wear	Incorrect belt tension or out of alignment.	Adjust tension and alignment. (See Adjust Reel Drive Belt in this section.)
	Sheaves are worn.	Replace sheaves.
	Sheave grooves are partially filled.	Remove dirt or rust from grooves.
		Continued on next page
TM1474 (15JAN02)	30-10-3	1600 Mower-Conditioner $\begin{array}{r}150102 \\ \mathrm{PN}=74\end{array}$

Symptom	Problem	Solution
	Knives are producing excessive load on belt.	Replace dull or broken sections. (See Replace Knife Sections in Section 20.)
		Adjust knife hold-downs. (See Adjust Regular or Non-Clog Hold-Downs in Section 20.)
30	Adjust gauge shoes. (See Adjust Gauge Shoes in this section.)	

Group 15 Platform Frame

REPLACE GAUGE SHOES

4
CAUTION: Lower both cylinder stops when working on machine. Failure to do so can result in personal injury or machine damage.

1. Raise platform and lower cylinder stop at each end of carrier frame.
2. Pull pin (A) and allow gauge shoe (B) to drop down.
3. Remove two cap screws and supports (C).
4. Install gauge shoes in reverse order of removal.
5. Adjust guage shoe, (see 'Adjust Guage Shoe in this section).

REMOVE PLATFORM

1. Move machine to level area.
2. Lower platform to ground.
3. Disconnect wiring harnesses from tongue and carrier frame.
4. Disconnect powershaft U-joint from carrier. (See Remove Powershaft in this section.)

A
CAUTION: Platform pivots forward when upper link is disconnected. Support platform to prevent injury or machine damage.

IMPORTANT: Supporting platform at center of knockdown bar can bend bar.
5. Support front of platform at ends of knockdown bar.

Right Side

[^2]8. Remove pin (A) and disconnect lower link (B) from wheel support (C).

NOTE: The platform can also be removed from the carrier frame by disconnecting the front of the lower links. Float springs would not have to be completely removed, but make sure all spring tension is released.

9. Move carrier frame to the rear and away from the platform.
10. Remove pins (A) on each side and disconnect lower links (B) from platform if necessary.

ATTACH PLATFORM

1. Reverse steps 1-9, REMOVE PLATFORM in this Section and Group using the following special instructions.
2. Install down stop cable (B) on lower link (A) then the float spring (C) with hook opening to the rear.
3. Coat float spring bolt head and washer with NEVER-SEEZ ${ }^{\circledR}$

ADJUST PLATFORM GUARD ANGLE

Adjust to minimum 6° below horizontal for rocky conditions, or to maximum 12° for flat conditions and short stubble.

NOTE: When setting guard angle (D), top of tongue (C) is level, guage shoes and platform lift cylinders are set for cutting short stubble. (See ADJUST CARRIER FRAME HEIGHT in this Section.)

1. Adjust guard angle (D) by changing length of upper link (A). Three revolutions equal one degree of angle.

NOTE: Dimension (B) is measured from center of ball joint to center of ball joint.
2. Adjust length (B) of upper link (A) to specified length to obtain desired guard angle (D).

NOTE: Initial guard angle setting, when shipped from the factory, is 737 mm (29 in.).

Guard angle-(D) Dimension-(B)

. ${ }^{\circ}$	756 mm (29-3/4 in.)
$9{ }^{\circ}$	718 mm (28-1/4 in.)
6°	$668 \mathrm{~mm}(26-1 / 4 \mathrm{in}$.

3. For a guard angle of 8°, adjust upper link (A) to a dimension (B) of 718 mm (28-1/4 in.), then shorten upper link (A) three complete turns.
4. Adjust gauge shoes and platform float. (See Adjust Gauge Shoes and Adjust Platform Float in this section.)
```
A-Upper link
B-Dimension
C-Tongue
D-Guard angle
```


ADJUST PLATFORM GUARD ANGLE WITH ELECTRIC GUARD ANGLE CONTROLLER

The electric guard angle actuator (A) can change the guard angle from 6° below horizontal to 12° below horizontal.

IMPORTANT: Do not change upper link setting and operate electric actuator as the conditioner rolls may contact rear of platform.

1. Set upper link to 685 mm (27 in .) (B) from center of ball joint to center of ball joint.
2. Retract actuator (A) to set guard angle at 6° below horizontal.
3. Extend actuator halfway (approximately 76 mm [3-in.]) to set guard angle at $8-1 / 2^{\circ}$ below horizontal.
4. Completely extend actuator to set guard angle at 12°

ADJUST PLATFORM FLOAT

IMPORTANT: Do not raise platform unless float springs are installed and adjusted. Failure to adjust float springs before raising platform can cause the upper link to damage the power tube.

Adjust float springs (B) for ground pressure of $23-45 \mathrm{~kg}$ $(50-100 \mathrm{lb})$ measured at each end of knockdown bar.

Use the lightest float setting that allows the platform to remain firmly on the ground without bouncing. The platform should follow uneven ground without gouging or scraping.

NOTE: Dimension (A) is $\pm 10 \mathrm{~mm}$ (3/8 in)
Following are the factory settings:

Machine Width	Left-Hand Side (A)	Right-Hand Side (A)
12 Foot	220 mm (8-5/8 in)	255 mm (10 in)
14 Foot	$160 \mathrm{~mm}(6-1 / 4 \mathrm{in})$	$210 \mathrm{~mm}(8-1 / 4 \mathrm{in})$
16 Foot	150 mm (5-7/8 in)	175 mm (6-7/8 in)

1. Loosen jam nut (C).
2.Turn adjusting bolt (D) clockwise to decrease ground pressure and counterclockwise to increase ground pressure.
2. Tighten jam nut (C).

A-Dimension
B-Float Spring
C-Jam Nut
D—Adjusting Bolt

ADJUST GAUGE SHOES

\ CAUTION: Lower BOTH cylinder stops when working on machine. Failure to do so can result in personal injury or machine damage.

1. Lower cylinder stop at each end of carrier frame.
2. Pull rod (A) to retract pin. Lift or lower gauge shoe (B) until pin engages hole for desired gauge shoe position.
3. Repeat step on opposite side.

IMPORTANT: Cylinder position must correspond to guage shoe position. If not, machine damage may occur.
4. Adjust carrier frame height to correspond with guage shoe adjustment (See Adjust Carrier Frame Height in this section).
5. Check platform float and guard angle adjustment.
6. Raise cylinder stops before operating the mower-conditioner.

ADJUST CARRIER FRAME HEIGHT

1. Raise machine completely.

A
CAUTION: Lower BOTH cylinder stops when working on machine. Failure to do so can result in personal injury or machine damage.
2. Lower cylinder stop (A) at each end of carrier frame.
3. Lower machine onto stops.
4. Remove quick-lock pin (B). Remove washers and retaining pin.

- See 5A. NORMAL CUTTING HEIGHT and 5B. LOWEST CUTTING HEIGHT on the following pages.

5A. NORMAL CUTTING HEIGHT:

- Push bottom of cylinder to the end of retaining slot (A).
- Rotate retaining arm (B). Align retaining slot with the short slot on wheel support bracket.
- Install the retaining pin (C), washers, and quick-lock pin.
- Repeat on opposite side.

IMPORTANT: Cylinder position must correspond to gauge shoe position. If not, machine damage may occur.

- Adjust gauge shoes to one of the three highest cutting heights. (See Adjust Gauge Shoes in this section.)

5B. FOR LOWEST CUTTING HEIGHT:

- Move cylinder forward to the end of retaining slot
- Align retaining arm (A) with the short slot on wheel support bracket.
- Install retaining pin (B), washers and quick-lock pin.
- Repeat on opposite side.

IMPORTANT: Cylinder position must correspond to gauge shoe position. If not, machine damage may occur.

- Adjust gauge shoes to the lowest cutting height. (See Adjust Gauge Shoes in this section.)

6. Raise machine.
7. Raise cylinder stops before operating the machine.

Group 20

REMOVE REEL

1. Swing platform to right and lower to ground.

IMPORTANT: Lifting reel with hoist attached to bat can damage bat or tooth pipe.
2. Support reel with hoist attached to center tube (A).

EX,1474,3020,A -19-26APR93
3. Remove nut (A) from reel position adjusting eyebolt.
4. Remove side sheet reinforcement (B).
5. Disconnect lube line (C) from side sheet band.

6. Remove right access door (A).

NOTE: Remove hinge cap screws from side sheet band to remove door.
7. Remove side sheet band (B).

! CAUTION: Lever (A) is spring loaded. Hold firmly until spring tension is released.

8. Raise lever (A) to release reel drive belt tension.
9. Remove reel drive belt (B) from driven sheave (C). It is not necessary to remove belt from platform.
10. Loosen cap screw and pull sheave loose from tapered shaft.
11. Remove sheave.

EX,1474,3020,D-19-26APR93
12. Remove two carriage bolts, two adjustment spacers (A), and adjustment strap (B).
13. Pull pillow block housing (C) from shaft.

14. Disconnect lube line (A) from left side sheet band.
15. Drive spring pin (B) from end of reel shaft.
16. Remove hardened washer (C) and spacer washers from reel shaft.
17. Remove nut (D) from reel position adjusting eyebolt.

```
A-Lube Line
B-Spring Pin
C-Washers
D-Adjusting Nut
```


18. Remove two cap screws, two adjustment spacers (A), and adjustment eyebolt (B).
19. Pull pillow block housing (C) from reel shaft.
20. Remove spacer washers (D) from reel shaft.

NOTE: Washers can be easily dropped when removing reel. Count washers because they will be used for alignment during assembly.

A-Spacers

B-Eyebolt
C-Reel Mounting
D-Washers
21. Remove carriage bolts from right end of knock-down bar to allow movement of the side sheet.
22. Remove reel by swinging right end up and to front. Leave reel cam in place.
23. Remove reel cam (A), if necessary, by removing two carriage bolts (B).

INSPECT REEL PARTS

1. Check bushings (A) for excessive wear or scoring. Remove damaged bushings.
2. Install bushings by pressing flush with each side of pillow block (B).

3. Check cam follower bearings for roughness or damage.
4. Check drive belt for excessive wear or fraying.
5. Inspect remaining parts for damage or excessive wear.

INSTALL REEL

1. Install reel in reverse order of removal using following special instructions.
2. Install cam follower bearings (A) into cam (B) in trailing position.
3. Install same number of washers (C) which were removed from reel shaft.
4. Rotate reel to make sure follower bearings are inside cam through 360° of rotation and that cam arms (D) clear track. Add or remove washers on shaft if needed.
5. Grease reel fittings.

A-Cam Follower Bearings
B-Reel Cam
C-Adjusting Washers
D-Reel Cam Arms

ADJUST REEL

IMPORTANT: The reel teeth should run as close as possible to the cutterbar and deck sheet.

1. Loosen cap screws (A) to change reel position.
2. Adjust eyebolts (B) to move reel.
3. Tighten cap screws.

NOTE: Move spacers (C) for additional adjustment. Place spacers under support channel to move reel down and forward. Place spacers between support channel and pillow block to move reel up and rearward.

Left-Hand Side

Right-Hand Side

ADJUST CAM

1. Loosen adjusting bolts (A) and (B) on left side sheet.
2. Rotate cam so that bolt (A) is $45-50 \mathrm{~mm}(1.8-2.0$ in.) (C) from end of slot.
3. Tighten bolts and turn reel over by hand to check tooth clearance with guards, deck, and auger. Readjust if necessary.

REPLACE CAM FOLLOWER BEARINGS

1. Loosen two carriage bolts (A) on reel cam.
2. Loosen two cap screws (B) on reel mounting.
3. Move reel forward with adjusting bolt (C).
4. Remove cam bearing access plug (D).

A-Carriage Bolts
B-Cap Screws
C-Adjusting Bolt
D-Bearing Access Plug

5. Remove cap screw and cam follower bearing (A).
6. Replace bearing and tighten cap screw (B) to 230 $\mathrm{N} \cdot \mathrm{m}$ (170 lb-ft).

REPLACE REEL TEETH IN RIGHT AND CENTER SECTIONS

1. Rotate reel to position shown for ease in replacing reel teeth.
2. Loosen two nuts on reel bat (A) and remove two cap screws (B), nuts, and bracket (C).

3. Remove pipe bushing (A) and bushing retaining pin (B).
4. Remove $3 / 8 \times 2$-in. cap screws, lock nuts, special washers and teeth necessary to replace damaged teeth in right-hand section.

EX,1474,3020,R -19-26APR93
5. If broken teeth are in center section, remove washers (A), spring pin (B), spacer (C), two cap screws and nuts (D), bracket (E), pipe bushing (F), and bushing retaining pin (G) from center support.

NOTE: Note location of washers for reassembly.
A-Washers
B-Spring Pin
C-Spacer
D-Cap screws
and Nuts

E-Bracket
F-Pipe Bushing
G-Bushing Retaining
Pin

6. Remove $3 / 8 \times 2$-in. cap screws, lock nuts, special washers, and teeth as necessary to replace damaged teeth.

NOTE: Torque tooth cap screws to 11-24 N•m (8—18 $l b-f t)$. Torque $3 / 8 \times 3 / 4$ bat carriage bolts to 34-60 N•m (25-44 lb-ft)

IMPORTANT: When reinstalling pipe bushing and bushing retaining pin, make sure the pin locks into bushing. This prevents bushing from rotating which causes
 excessive wear.
7. Trim teeth to clear hold-downs at center of regular cutterbar, if necessary.

REPLACE REEL TEETH IN LEFT SECTION

1. Remove right-hand and center reel teeth. (See Replace Reel Teeth in Right and Center Sections in this section.)
2. Remove two cap screws (A) and nuts from left mounting bracket. Remove tooth bar and place assembly on support.

EX,1474,3020,U -19-26APR93
3. Remove bracket (A), pipe bushing (B), and bushing retaining pin (C).

4. Remove $3 / 8 \times 2$-in. cap screws, lock nuts, special washers, and teeth necessary to replace damaged teeth in left-hand section.

NOTE: Tighten tooth cap screws to 11-24 N•m (8-18 $\mathrm{lb}-\mathrm{ft}$). Tighten $3 / 8 \times 3 / 4$ bat carriage bolts to 34-60 N•m (25-44 lb-ft).

5. If necessary to remove bracket (A), note location of spacer (B).

6. Replace tooth bar with cam follower bearing (A) in trailing position.
7. Adjust cam follower. (See Adjust Cam Followers in this section.)

ADJUST CAM FOLLOWERS

A minimum of 3 mm (0.1 in .) clearance (A) is necessary between cam follower arm (B) and bracket (C), and between cam follower arm (B) and cam (D).

To adjust:

1. Loosen lock nuts (E).
2. Move bracket (C) until a 3 mm (0.1 in .) clearance is obtained. Rotate reel to make sure follower bearings are inside cam through 360° of rotation and that cam arms (B) clear track.
3. Tighten lock nuts (E).

A-3 mm (0.1 in.)

Clearance
B-Cam Follower Arm
C-Bracket
D-Cam
E-Lock Nut

If a 3 mm (0.1 in .) clearance cannot be obtained in previous steps, proceed as follows:
4. Remove spring pin (A).
5. Add or remove number of washers needed to obtain 3 mm (0.1-in.) clearance between cam follower bracket and cam. Replace spring pin.

NOTE: Maintain tooth bar endplay of $0.3-2 \mathrm{~mm}$ (0.01-0.08-in.).

6. Reverse procedure for reassembly of tooth bar.

NOTE: Tighten $3 / 8 \times 2$-in. tooth cap screws to 11-24 $\mathrm{N} \cdot \mathrm{m}$ (8-18 lb-ft). Tighten $3 / 8 \times 3 / 4$ bat carriage bolts to $34-60 \mathrm{~N} \cdot \mathrm{~m}(25-44 \mathrm{lb}-\mathrm{ft})$.

REMOVE UPPER AUGER

1. Lower platform to ground.
2. Support upper auger (A) with hoist.

3. Remove carriage bolts (A) and upper right auger stripper.

4. Loosen nuts and move two idlers (A) on left side of platform to release belt tension.
5. Remove knife drive belt (B). It is not necessary to remove auger drive belt (C).

NOTE: Remove bearing for easier installation of auger.
6. Remove left flangettes (A) and bearing from upper auger shaft (B).

7. Remove nut and knife drive belt idler (A) from right side of platform.
8. Remove knife drive belt (B).

A
 CAUTION: Lever is spring loaded. Hold firmly until spring tension is released.

9. Raise lever (C) to release reel belt tension.
10. Remove reel drive belt (D) from sheaves. It is not necessary to remove belt from platform.
11. Remove nut and reel drive idler (E).

A-Knife Drive Idler
B-Knife Drive Belt
C-Reel Belt Tension Lever
D-Reel Drive Belt
E-Reel Drive Idler

12. Loosen lower nut (A) and remove upper nut (B).
13. Pivot chain tension link (C) down, to release auger drive chain (D) tension.
14. Remove chain connector link and remove auger drive chain (D).

NOTE: Note location of washers for reassembly.
15. Remove nut and reel drive variable sheave (E).

A-Lower Chain Tension Linkage Nut
B-Upper Chain Tension Linkage Nut
C-Chain Tension Link
D-Auger Drive Chain
E-Reel Drive Sheave

NOTE: Do not reuse Nylock cap screws.
16. Remove cap screws and auger sprockets (A). Remove any paint, nicks, or burrs from auger hex shafts.

NOTE: Right flangettes (B) and bearings can now be removed if bearing replacement is needed. End plates (D) and (F) can be removed without removing flangettes and bearings.
17. Remove five flange nuts (C) and lower end plate (D).
18. Remove four flange nuts (E) and upper end plate (F).

NOTE: Note number of washers for reassembly.
19. Remove washers (A) from shaft.
20. Slide upper auger (B) to right and remove from platform.

REMOVE LOWER AUGER

1. Lower platform to ground.
2. Loosen nut and move auger drive belt idler (A) on left side of platform to release belt tension.
3. Remove auger drive belt (B) from auger driven sheave (C). It is not necessary to remove belt from platform.
4. Remove cap screw and auger driven sheave (C).

NOTE: Note amount of washers for reassembly.
5. Remove washers (A) from shaft.

NOTE: Remove bearing for easier installation of auger.
6. Remove left flangettes (B) and bearing.

7. Loosen nut (A) and move right knife drive belt idler (B) to release belt tension.
8. Remove knife drive belt (C).

9. Loosen lower nut (A) and remove upper nut (B).
10. Pivot chain tension link (C) down, to release auger drive chain (D) tension.
11. Remove chain connector link and remove auger drive chain (D).

> A-Lower Flange Nut
> B-Upper Flange Nut C-Chain Tension Link D-Auger Drive Chain

NOTE: Do not reuse Nylock cap screws.
12. Remove cap screw and auger sprocket (A). Remove any paint, nicks, or burrs from auger hex shaft.

NOTE: Right flangettes (B) and bearing can now be removed if bearing replacement is needed. End plate (D) can be removed without removing flangettes and bearing.
13. Remove five flange nuts (C) and lower end plate (D).

NOTE: Note amount of washers for reassembly.
14. Remove washers (A) from auger shaft.
15. Slide lower auger (B) to the right and remove from platform.

INSPECT AUGERS

1. Check flighting on augers for damage.
2. Check bearings for roughness.
3. Replace parts if necessary.

INSTALL AUGERS

1. Install augers in reverse order of removal using the following special instructions.
2. Install same number of washers removed from right end of auger shafts. Add or remove washers to center augers in side sheets.
3. Install upper end plate (A).

NOTE: Position chain tensioner (C) so that the bend in spring (D) is beyond the edge (E) of the brace.
4. Install lower end plate (B).

IMPORTANT: Install sprockets (F) and (G) with long hub to inside.

Make sure auger sprockets (F) and (G) are tight against bearings and retaining washer does not bottom on end of shaft.

Do not reuse Nylock cap screws (H).
5. Install 17 tooth sprocket (F) on upper auger and 19 tooth sprocket (G) on lower auger.
6. Tighten cap screws (H) to 250-247 N•m (185-210 lb-ft).
7. Install reel drive variable sheave (I) and tighten nut to $106-174 \mathrm{~N} \cdot \mathrm{~m}$ (78-128 lb-ft).

IMPORTANT: Before installing idler sprockets (L), be sure washers (K) and spacers (L) are in correct location.
8. Position idler sprockets (L) and install chain tension link (Q).
9. Install auger drive chain (R) and adjust idler sprockets. (See 'REPLACE AND ADJUST AUGER DRIVE CHAIN' in this section.

NOTE: Small idler sheave (M) tensions reel drive belt (N), and large idler sheave (O) tensions knife drive belt (P).
10. Install reel drive sheave (M) and reel drive belt (N). (See 'ADJUST REEL DRIVE BELT' in this section).
11. Install knife drive sheave (O) and knife drive belt (P). (See 'TIME KNIVES' in Section 20, and 'ADJUST KNIFE DRIVE BELT' in this section).

IMPORTANT: Add washers between auger and

 right-hand bearing if necessary to move shaft.12. Install same number of washers (A) removed from left end of lower auger shaft. Add or remove washers to align auger driven sheave with upper drive sheave.

IMPORTANT: Make sure sheave hub is tight against washer stack and retaining washer does not bottom on end of shaft.

Do not reuse Nylock cap screws.
13. Install auger driven sheave (B) with long hub to inside and new cap screws.
14. Tighten cap screws to $250-247 \mathrm{~N} \cdot \mathrm{~m}(185-210$ $\mathrm{lb}-\mathrm{ft})$.
15. Adjust belt (C) tension. (See 'TIME KNIVES' in Section 20 and 'ADJUST AUGER DRIVE BELT' and 'ADJUST KNIFE DRIVE BELT' in this section.)

ADJUST UPPER AND LOWER AUGER STRIPPER

NOTE: 4.27 m (14 ft) platform illustrated.

1. Loosen bolts (A) to adjust upper stripper, and bolts
(B) to adjust lower stripper.
2. Adjust strippers to maintain a $2-4 \mathrm{~mm}$ (0.01-0.2-in.) clearance between stripper and auger.
3. Tighten bolts.

ADJUST CENTER AUGER STRIPPER

1. Loosen bolts to adjust center stripper (A).
2. Adjust stripper to maintain a $2-4 \mathrm{~mm}(0.1-0.2 \mathrm{in}$.) clearance between stripper and auger.
3. Tighten bolts.

Group 30 Platform Drives

REMOVE POWERSHAFT

1. Remove cap screw (A) and pull powershaft (B) from cross shaft.

NOTE: Count the washers on the cross shaft because they will be used to adjust endplay during assembly.

2. Loosen four cap screws (A) to release platform drive belt tension.
3. Spring shield (B) and remove from cap screws.

NOTE: Shield mounting holes are slotted.
4. Remove cap screw retaining U-joint (C), and disconnect left end of powershaft.

RECONDITION POWERSHAFT

1. Remove snap ring (A) from shield.
2. Remove shield (B) from yoke and shaft assembly.

3. Remove snap ring (A) from yoke.

NOTE: If snap ring sticks, loosen by striking bearing lightly with rubber mallet.

4. Position joint in an open vise with each ear of one yoke supported by a vise jaw.
5. Strike the top ear of unsupported yoke to drive top bushing outward approximately 9.5 mm (0.37 in .)

6. Clamp loosened bearing in vise and drive yoke off.
7. Repeat this procedure for removing bearing directly opposite the one just removed.
8. Remove yoke.

9. Support cross as shown making certain that vise jaws are covered with brass protectors. Strike yoke ear to remove remaining bushings.
10. Repeat procedure for remaining U-joint.

11. Remove nylon bearing (A) from shield (B).
12. Reverse steps 1 through 12 to assemble.

INSTALL POWERSHAFT

1. Install powershaft in reverse order of removal using the following special instructions.
2. Install left-hand U-joint using replacement cap screw.

NOTE: Do not reuse Nylock cap screws.
3. Tension platform drive belt.
4. Install the same number of washers (A) removed
 during shaft removal. Add or remove washers to obtain maximum carrier cross shaft endplay of 1.5 mm (0.06 in.).

RECONDITION PLATFORM DRIVE SHEAVE

1. Remove powershaft. (See Remove Powershaft in this section.)
2. Loosen four cap screws (A) and move platform drive sheave housing (B) forward.
3. Remove belt (C) from sheave. It is not necessary to remove belt from driven sheave.
4. Remove cap screws and platform drive sheave

5. Remove key (A) used with powershaft (B).
6. Remove snap ring (C) from housing.
7. Press shaft (D) from inside bearing.

8. Check bearings for roughness and check shaft for excessive wear or damage. Replace damaged parts.
9. Assemble in reverse order of disassembly using following special instructions.
10. Press bearing (A) against shoulder of snap ring side of housing (B). Press against outer race.
11. Press bearing (C) against shoulder of shaft (D). Press against inner race.

12. Place spacer (E) on shaft and press bearing with housing onto shaft and against spacer. Press against inner race.
13. Install platform drive sheave on platform and tension belt. (See Adjust Platform Drive Belt in this section.)

A-Inside Bearing

B-Housing
C-Outside Bearing
D-Shaft
E-Spacer

REMOVE PLATFORM CROSS SHAFT

1. Remove drive belts on left side. (See Replace Left Drive Belts in this section.)
2. Loosen two knife drive hub clamp bolts (A).

NOTE: Remove gear (B) from hub (C) for better access to clamp bolts on left side.
3. Slide hub from shaft.

EX,1474,3030,M -19-26APR93
4. Remove washers (A) from shaft.

NOTE: Count washers. They will be used for alignment during assembly.
5. Repeat knife drive hub removal on right side.
6. Pull shaft (B) from bearings.
7. Check bearing (C) on each end for roughness.

Replace by removing flangettes, if necessary.

8．Remove shields（A）and check center support bearings（ B ）．Replace if necessary．

INSTALL PLATFORM CROSS SHAFT

1．Install shaft in reverse order of removal using the following special instructions．

2．Install the same number of washers（A）removed from each end of the shaft．

3．Add or remove washers to align driven sheave（B） with platform drive sheave（C）before belt is installed．

NOTE：Alignment changes when belts are installed due to shaft deflection．（See Align Knife Drive Belt in this section．）

4．Add or remove washers to align right knife drive gear with drive case gear before belt is installed．

5．Tighten hub clamp cap screws（D）to 271－379 N•m （200－280 lb－ft）．

6．Install and tension belts．
7．Rotate knife drive gears in direction of machine operation to check timing belt tracking．Timing belt must be fully supported by knife drive case gear．

NOTE：Belt may track to edge，but must not overhang．
8．Adjust tracking by adding or removing washers under knife drive idler sheave．

A－Washers

B－Driven Sheave
C－Platform Drive Sheave
D—Hub Clamp Cap Screws
9. Use dial indicator (A) to check run out on platform driven sheave (B). Maximum run out should not exceed 0.76 mm (0.030 in .).
10. If run out exceeds 0.76 mm (0.030 in .), mark the (high) side of sheave and rotate it opposite of jack shaft sheave (C).
11. Loosen three cap screws (D) to allow sheave to center. Tighten cap screws (D).
12. Recheck run out. Readjust if necessary.

A-Dial Indicator

B-Driven Sheave
C—Jack Shaft Sheave
D-Cap Screws

RECONDITION REEL DRIVE VARIABLE SHEAVE

A
CAUTION: Lever is spring loaded. Hold firmly until spring tension is released.

1. Raise lever (A) to release reel belt tension.
2. Remove belt (B) from variable sheave. It is not necessary to remove belt from platform.
3. Remove six nuts, shims, and sheave halves (C).

4. Loosen two flange nuts (A) to release tension on auger drive chain (B).
5. Remove chain (B) from variable sheave sprocket. It is not necessary to remove chain from platform.
6. Remove nut (C) and sprocket (D).

> A-Flange Nut
> B-Chain
> C-Nut
> D-Sprocket

7. Check bearings (A) for roughness.
8. Press out hub (B) and bearings if parts are damaged.

9. Press replacement bearings (A) into each end of hub
(B) and against spacer (C). Press on outer bearing race.

NOTE: Bearings are to be flush to 0.38 mm (0.015 in.) into bore.
10. Press shoulder of hub against sprocket.
11. Install sprocket and sheave on platform. Tighten reel drive variable sheave mounting bolt to $106-174 \mathrm{~N} \cdot \mathrm{~m}$ ($78-128 \mathrm{lb}$-ft). Tighten six carriage bolts to $48-60 \mathrm{~N} \cdot \mathrm{~m}$
 (35-44 lb-ft).
12. Adjust reel speed. (See Adjust Reel Speed in this section.)
13. Tension chain and belt. (See Replace and Adjust Auger Drive Chain and Adjust Reel Drive Belt in this section.)

ADJUST REEL SPEED

Reel speed should be 5 to 10 percent faster than ground speed.

Add shims between sheave halves to decrease reel speed. Remove shims to increase reel speed.

1 CAUTION: Lever is spring loaded. Hold firmly until spring tension is released.

1. Raise lever (A) to release belt tension.

2. Remove six nuts from drive sheave (B).
3. Remove adjustable sheave half.

IMPORTANT: Do not add more than four shims or damage to belt may occur.
4. Position shims to obtain desired reel speed.
5. Tighten six carriage bolts to 48-60 N•m (35-44 $\mathrm{lb}-\mathrm{ft})$.

REPLACE AND ADJUST AUGER DRIVE CHAIN

IMPORTANT: Replace chain if it has stretched to the end of adjustment slots. Removing links and running stretched chain will damage sprockets.

1. Loosen nuts (A) to release chain tension.
2. Remove chain connector link from chain (B). Remove chain.

NOTE: The closed end of clip must face in direction of travel.
3. Install new chain. Fasten with connector link and spring clip.
4. Adjust idlers until there is 13 mm (0.5 in .) deflection measured at mid-span (C) of chain. Tighten nuts (A).
5. Add or remove washers at idler sprockets and
 variable reel sheave to align chain if necessary.

REPLACE AND ADJUST AUGER DRIVE CHAIN TENSIONER

1. Loosen flange nuts (A) and release auger chain (B) tension.

2. Remove cotter pin (A) and two washers (B).
3. Remove torsion spring (C) and tensioner block (D).
4. Remove two washers (E) and check shaft on bracket (F) for wear. Replace bracket as necessary.
5. Check torsion spring and tensioner block for excessive wear. Replace as necessary.
6. Reverse steps 2 thru 4 and install tensioner block, with the following additional steps.

IMPORTANT: The bend in the spring (C) must be beyond the edge (H) of the bracket when the tensioner block (D) is rotated up into operating position.
7. Loosen flange nut (G) to move the bracket (F) close, not touching, to the edge (H) of the brace, and position the bend in the spring (C) beyond the edge (H) of the brace.

A-Cotter Pin

B-Washers
C-Torsion Spring
D-Tensioner Block
E-Washers
F-Bracket
G-Flange Nut
H-Edge

ALIGN KNIFE DRIVE BELT

IMPORTANT: Running machine with no load for long periods of time can cause damage. Knife drive belts must not hang over edge of drive and driven gears.

1. Run machine at low rpm long enough to check knife drive belt (B) tracking on drive and driven gears.
2. Check alignment of drive and driven gears. (See Install Platform Cross Shaft in this section.)

IMPORTANT: Overtensioning knife drive belt can cause belt to run out of alignment.
3. Check belt tension. (See Adjust Knife Drive Belt in this section.)

NOTE: Count washers on idler (B) whenever it is removed.
4. Remove nut (A), move washers to position idler (B) to adjust tracking of knife drive belt (C).

REPLACE LEFT DRIVE BELTS

IMPORTANT: Do not bend timing belt sharply or back bend it. Sharp bends can damage internal tensile members and cause premature belt failure.

1. Loosen nut (A) to release belt tension.
2. Remove knife drive belt (B).

3. Loosen four mounting bolts (A).
4. Remove platform drive belt (B).

EX,1474,3030,Y -19-26APR93
5. Loosen nut (A) to release belt tension.
6. Remove auger drive belt (B).
7. Install replacement belts where needed by reversing order of removal.

NOTE: Time knives before installing knife drive belt. (See Time Knives in Section 20.)
8. Adjust belt tensions. (See Adjust Knife Drive Belt, Adjust Platform Drive Belt, and Adjust Auger Drive Belt
 in this section.)

REPLACE RIGHT DRIVE BELTS

IMPORTANT: To prevent damage to internal tensile members causing premature belt failure, do not hang belt on a hook, back bend it or bend it sharply.

1. Loosen nut (A) on idler (B) to release belt tension.
2. Remove knife drive belt (C).

CAUTION: Lever (A) is spring loaded. Hold firmly until spring tension is released.
3. Raise lever (A) to release reel belt tension from normal position (D).
4. Loosen idler pivot (B).
5. Remove reel drive belt (C).

IMPORTANT: Time knives before installing knife drive belt. (See Time Knives in Section 20.)
6. Install replacement belts where needed by reversing order of removal.
7. Adjust belt tension. (See 'ADJUST KNIFE DRIVE BELT' and 'ADJUST REEL DRIVE BELT' in this section.)

[^3]
ADJUST KNIFE DRIVE BELT (BOTH SIDES)

1. Loosen nut (A).
2. Adjust idler (B) until drive belt (C) deflects 11.5 mm (0.45 in .) when $45-58 \mathrm{~N}(10-13 \mathrm{lb}$) is applied at the center of the belt span.
3. Tighten nut (A).

ADJUST REEL DRIVE BELT

A
CAUTION: Lever (A) is spring loaded. Hold firmly until spring tension is released.

Move lever (A) to the fourth hole for correct belt tension. If belt begins to slip or wear, move lever to the next hole.

ADJUST AUGER DRIVE BELT

1. Loosen nut (A).
2. Adjust pulley until drive belt (B) deflects 11.5 mm (0.45 in .) when $67-84 \mathrm{~N}(15-19 \mathrm{lb}$) is applied at the center of the belt span.
3. Tighten nut (A).

ADJUST PLATFORM DRIVE BELT

1. Loosen four mounting bolts (A)
2. Adjust pulley until drive belt (B) deflects 3.5 mm (0.13 in.) when $98-124 \mathrm{~N}(22-24 \mathrm{lb})$ is applied at the center of the belt span.
3. Tighten bolts (A).

CARE OF V-BELTS

1 CAUTION: To prevent injury, never attempt to install, check, or adjust V-belts or chains while platform is running. Disengage PTO and shut off tractor engine. Never operate platform with shields removed from chain or belt drives.

When installing V-belts, all tighteners should be loosened, or a sheave removed, to get belt into place. Never pry belt over the edge of a sheave, as this will rupture one or more cords and weaken the belt.

V-belts stretch when new. Check tension frequently for the first few days and take up the initial stretch so belt does not slip.

Occasionally, a belt may turn or roll in a sheave. Operating in this condition, even for a short time, will be detrimental. A rolled belt passes around the sheave on edge and is not to be confused with a crossed belt. Rolling of the belt is caused by lack of sufficient tension or improper installation.

Do not allow grease to remain on a belt.
The condition of sheave flanges has a definite bearing on belt life. If flanges are too narrow or are damaged, belts cannot give satisfactory service.

A slight raveling of the belt covering does not indicate premature failure. Raveling should be cut off if covering peels at the splice.

When operating the platform in a dry climate, belts tend to become covered with a fine dust glaze. This condition can be remedied by washing belts with a non-flammable cleaner.

Section 40 Conditioner

Contents
 Page

Group 05-General Information
Conditioner Description 40-05-1
Specifications 40-05-2
Torque Values 40-05-2
Special Tools 40-05-2
Group 10—Diagnosing Malfunctions . . . 40-10-1
Group 15-Chain Drive
Remove Conditioner Roll Drive Chain . . . 40-15-1
Install O-Ring Connector Link 40-15-2
Install Conditioner Roll Drive Chain 40-15-3
Care of Chains 40-15-5
Group 20-Roll Arms
Remove Conditioner Roll Arm 40-20-1
Inspect Conditioner Roll Arm 40-20-2
Install Conditioner Roll Arm 40-20-3
Group 25-Rolls
Remove Upper Roll 40-25-1
Remove Lower Roll 40-25-4
Inspect Conditioner Parts 40-25-6
Replace Roll Shaft 40-25-7
Install Conditioner Rolls 40-25-9
Tighten Bearing Locking Collar 40-25-13
Adjust Roll Spacing 40-25-14
Adjust Conditioner Roll Pressure 40-25-15
Adjust Roll Timing 40-25-16

Group 05 General Information

CONDITIONER DESCRIPTION

The conditioner rolls (A) have intermeshing cleats to condition the crop. The tensioner (B) maintains proper tension on the roll drive chain, and roll spacing is controlled by adjuster bolts (C).

Straps (D) between the wheel supports and roll arms (E) separate the rolls when the platform is raised for easier clean out of obstructions.

A-Conditioner Roll

B-Chain Tension Adjuster
C-Spacing Adjuster Bolt
D-Strap
E-Conditioner Roll Arm

The platform float springs (A) provide roll pressure.
Roll pressure can be increased or reduced as needed by the conditioner roll pressure adjustment (B).

The down stop cable (C) prevents the platform from damaging the power shaft during certain operating conditions.

SPECIFICATIONS

ITEM

Roll Arm
Roll Sprocket to Idler Sprocket
Roll Timing
Roll Arm Bushings
Roll Shaft
t.

Total Indicated Runout
Side Sheet Clearance
Alignment
Lug Clearance
Position

正

TORQUE VALUES

LOCATION	$N \cdot \mathrm{~m}$	(lb-ft)
Roll Sprockets	250	185
Roll Chain Tensioner Sprocket	(Tight, then back off 3/4 turn)
Roll Arm Pivot Pin Nut	(Tight, then back off 1/2 turn)

SPECIAL TOOLS

D01045AA - Driver set used to install bushings in conditioner roll arm.

DIAGNOSING MALFUNCTIONS

Symptom	Problem	Solution
Rolls plugging	Foreign objects between rolls.	Disengage tractor PTO, raise machine, and stop engine. When all moving parts are completely stopped, engage transport locks and remove foreign objects.
	Very heavy crop.	Slow down or cut less than full width of cutterbar.
	Uneven feeding in the machine.	Set roll gap to minimum clearance. (See Adjust Roll Spacing in this section.)
	Conditioner roll pressure too high.	Install adjustable roll pressure kit. Reduce roll pressure. (See Adjust Roll Pressure in this section.)
Leaf loss or crop damage	Ground speed too fast for condition of crop.	Slow down.
	Rolls too close.	Increase roll spacing.
	Conditioner roll pressure too high.	Install adjustable roll pressure kit. Reduce roll pressure. (See Adjust Roll Pressure in this section.)
Improper conditioning	Platform is not feeding crop to conditioner properly.	Adjust reel down and back, and adjust cam so reel teeth just clear the auger. (See Adjust Reel and Adjust Cam in Section 30.)
Improper drying	Crop is being bunched in windrow.	Adjust windrow width. (See Adjust Windrow Width in Section 50.)
		Decrease roll gap. (See Adjust Roll Spacing in this section.)
		Adjust reel. (See Adjust Reel in Section 30.)
	Conditioner is not crimping crop enough.	Decrease roll gap. (See Adjust Roll Spacing in this section.)
Excessive drying or bleaching.	Conditioner is crimping crop too much.	Increase roll spacing (maximum of 6 mm (0.25 in .).
		Install adjustable roll pressure kit. Reduce roll pressure. (See Adjust Roll Pressure in this section.)
	Crop is being spread too wide in windrow.	Raise swath flap up. (See Adjust Windrow Width in Section 50.)

Symptom	Problem	Solution
Excessive conditioner noise	Rolls too close.	Adjust roll spacing. (See Adjust Roll Spacing in this section.)
	Rolls out of time.	Time the rolls. (See Adjust Roll Timing in this section.)
Excessive roller chain wear	Chain too loose.	Check automatic chain tightener. (See Remove and Install Conditioner Roll Drive Chain in this section.)
	Chains are dry.	Clean and lubricate chains.
	Sprockets worn or out of alignment.	Replace worn sprockets or align sprockets. (See Install Conditioner Rolls in this section.)
	Excessive load on chains.	Avoid overload on drives.
Conditioner drive noise	Chain worn out and climbing on sprocket teeth.	Replace chain. (See Remove and Install Conditioner Roll Drive Chain in this section.)
	Chains are dry.	Clean and lubricate.
	Chain tightener not working.	Check parts. (See Remove and Install Conditioner Roll Drive Chain in this section.)

Group 15 Chain Drive

REMOVE CONDITIONER ROLL DRIVE CHAIN

NOTE: Platform removed for illustration only.

1. Lower machine to ground.
2. Loosen cap screws (A) and remove shield (B).

EX,1474,4015,A -19-26APR93
1 CAUTION: Spring (F) is under tension and will apply pressure against washer (C) beyond the end of the mounting bolt.
3. Remove lock nut (E), nut (D), and washer (C).
4. It is not necessary to remove spring (F), pipe spacer (B), and washer (A).

A-Washer
B-Pipe Spacer
C-Washer
D-Nut
E-Lock Nut
F-Spring

5. Remove cap screws (A), washers, and chain retainers (B).
8. Loosen nut (C) and remove chain.
7. Loosely reinstall chain retainer (B) to prevent loss of washers.
8. Replace chain if worn or stiff. (See Care of Chains in this section.)

NOTE: Vise grips or pliers may be necessary.
5. Place side plate (A) over pins and firmly compress to seat seal rings.
6. Slide spring clip (B) into place. Lock clip into annular grooves. The closed end of clip must face in the direction of chain travel.

EX, 1474,4015,E-19-26APR93

INSTALL CONDITIONER ROLL DRIVE CHAIN

IMPORTANT: Sprocket and timing plate (A) must be timed for proper mesh of conditioning rolls. If sprocket and timing plate are not timed correctly, excessive vibration and roll damage may occur. Rolls are correctly timed when there is equal clearance on both side of roll cleats.

1. If necessary, align idler sprockets (B) with motor sprocket (C) by shifting washers side-to-side on mounting bolts.
2. Tighten chain tensioner carriage bolt and back off nut (D) $3 / 4$ turn.
3. Install chain on sprockets.
4. Install chain retainer, washers, and cap screw.

> A-Timing Sprocket
> B-Idler Sprocket
> C-Motor Sprocket
> D-Nut
5. Install washer (A), spring (G), and pipe spacer (B).

NOTE: Compress spring (G) with washer (C).
6. Install washer (C), nut (D), and lock nut (E).
7. Adjust nut (D) until there is a 6.35 mm ($1 / 4 \mathrm{in}$.) gap (F) between washer (C) and pipe spacer (B).
8. Hold nut (D) in position with lock nut (E).
9. Time rolls. (See Adjust Roll Timing in this section.)

> A-Washer $7 / 64 \times 5 / 8 \times 1-15 / 32$ in. B-Pipe Spacer
> C-Washer $1 / 4 \times 21 / 32 \times 1-5 / 8 \mathrm{in}$.
> D-Nut $5 / 8$
> E-Lock Nut $5 / 8$
> F-Gap $6.35 \mathrm{~mm}(1 / 4 \mathrm{in}$.
> G-Spring

16. Install shield (B)and tighten cap screws (A).

CARE OF CHAINS

IMPORTANT: Do not use solvents such as gasoline, benzene, acetone, or other corrosive materials on conditioner drive O-ring chain as they may damage the elastic rubber compound O-rings. If chain needs cleaning, use kerosene applied to cloth. Do not apply kerosene directly to or submerse chain in kerosene.

Liberally apply SAE 30 or heavier oil, or John Deere Chain Lube spray to chains every 10 hours or operation.

Applying oil to O-ring chains extends their life by keeping O-rings moist to give a better seal for grease inside the chain.

IMPORTANT: Replace chain if it has stretched to the end of adjustment slot. Removing links and running stretched chain will damage sprockets.

Do not run chains so loose that they slap or so tight that premature failure occurs.

Be sure sprockets in each drive are properly aligned. Inspect sprockets frequently to make sure teeth are not worn enough to cause damage to chain.

When securing a chain, be sure closed end of spring clip faces in the direction chain will travel.

REMOVE CONDITIONER ROLL ARM

NOTE: Left side illustrated.

A
CAUTION: Release roll pressure before removing roll arm to prevent injury.

1. Raise platform and remove roll spacing adjusting bolt (A).
2. Lower platform to ground.
! CAUTION: Close rolls before removing roll arm to prevent injury or machine damage.
3. Loosen jam nut (B) and remove float spring (C).
4. Disconnect down stop cable (D).
5. Remove cap screw and disconnect upper end of roll opening strap (E).

A—Adjusting Bolt

B—Jam Nut
C-Float Spring
D-Down Stop Cable
E-Strap

NOTE: Tire removed for illustration only.
(-943000) is shown, procedure is the same for (943001-)

To remove right conditioner roll arm, chain and sprocket must be removed. (See REMOVE UPPER ROLL in this Section).
6. Remove locking collar (A), remove paint and burrs from shaft.

NOTE: Apply heat to the bearing before and during removal.
7. Remove flangettes (B) and bearing.
8. Remove pin and disconnect roll spacing clevis (C).

NOTE: Note position of washers. They will be used during assembly to adjust arm.
9. Remove locking nut, pivot pin (D), washers, and roll arm (E).

A-Locking Collar
B-Flangettes
C-Clevis
D-Pivot Pin
E-Roll Arm

INSPECT CONDITIONER ROLL ARM

1. Check roll arm (A) for damage.
2. Check two bushings (B) for scoring or excessive wear.
3. Remove damaged bushings from bore.
4. Press replacement bushings flush to 2 mm (0.1 in .) into pivot pin bore.

NOTE: Minimum torque on cap screws (C) is $102 \mathrm{~N} \cdot \mathrm{~m}$ (75 lb-ft).
5. Check cap screws (C) to insure they are tight.

INSTALL CONDITIONER ROLL ARM

NOTE: Platform and float spring removed for illustration only.
(-943000) is shown, procedure is the same for (943001-)

1. Install roll arm parts in reverse order of removal using following special instructions:
2. Install roll arm (A) and tighten roll-opening strap cap screw to $244-298 \mathrm{~N} \cdot \mathrm{~m}$ (150-220 lb-ft).

IMPORTANT: Clean shaft thoroughly and apply John Deere Primer TY6305 to shaft.

- Apply John Deere Retaining Compound T43515 on shaft (360 degrees) in the bearing area.

3. Install bearing and flangettes. Do not tighten locking
 collar or flangettes at this time. Rotate conditioner roll.
4. Adjust clearance, if necessary, by shifting washers (A) on pivot pin.
5. Tighten pivot pin locking nut (B) and back off $1 / 2$ turn.
6. Tighten flangettes and locking collar. (See Tighten Bearing Locking Collar in this section.)

REMOVE UPPER CONDITIONER ROLL

A
 CAUTION: Release roll pressure before removing rolls to prevent injury.

1. Raise platform and remove roll spacing adjusting bolt (A).
2. Lower and remove platform. (See Remove Platform in Section 30.)
3. Remove drive chain (B). (See Remove Conditioner Roll Drive Chain in this section.)
4. Remove reinforcement strap (C) on right front carrier frame side sheet.
5. Support upper conditioner roll (D) with hoist.

A-Adjusting Bolt
B-Drive Chain
C-Reinforcement Strap
D-Upper Conditioner Roll

6. Loosen cap screw from right end of upper roll and use three-jaw puller to loosen sprocket (A) from tapered splines.
7. Remove sprocket.

NOTE: SN (934001-) use non-relube bearings. Lube line (A) is not used.
8. Disconnect lube line (A) from float arm.
9. Remove locking collar (B).
10. Clean paint and burrs from upper roll shaft (C).

NOTE: Apply heat to the bearing before and during removal.
11. Remove flangettes (D) and bearing.

A-Lube Line
 B-Locking Collar C-Upper Roll Shaft D-Flangettes

SN (934001—)
EX,1474,4025,C -19-26APR93
12. Remove locking collar (A) from left end of upper roll.
13. Clean paint and burrs from shaft (B).

NOTE: Apply heat to the bearing before and during removal.
14. Remove flangettes (C) and bearing.

15. Remove pin and disconnect roll spacing clevis (A).
16. Remove cap screw and disconnect upper end of roll opening strap (B).

NOTE: Note position of washers because they will be used during assembly to adjust arm.
17. Remove locking nut, pivot pin (C) and conditioner roll arm (D).

A-Clevis
B-Roll Opening Strap
C-Pivot Pin
D-Conditioner Roll Arm

! CAUTION: To prevent injury, two technicians are needed to keep roll balanced during removal.

18. Remove roll (A) by swinging forward and to right.

REMOVE LOWER ROLL

1. Remove platform. (See Remove Platform in this section.)
2. Remove drive chain (A). (See Remove Conditioner Roll Drive Chain in this section.)
3. Remove reinforcement strap (B) on front of right carrier frame side sheet.
4. Support lower roll (C) with floor jack.
5. Open rolls with left and right adjusting screws (D) to disengage cleats.

A-Drive Chain
 B-Reinforcement Strap
 C-Lower Conditioner Roll
 D-Adjusting Screw

EX,1474,4025,G -19-26APR93
6. Loosen cap screw from right end of lower roll and use three-jaw puller to loosen sprocket (A) from tapered splines.
7. Remove sprocket.

8. Remove locking collar (A).
9. Clean paint and burrs from lower roll shaft (B).

NOTE: Apply heat to the bearing before and during removal.
10. Remove flangettes (C) and bearing.

SN (934001-)
EX, 1474,4025,J-19-26APR93
11. Remove locking collar (A) from left end of lower roll.
12. Clean paint and burrs from shaft (B).

NOTE: Apply heat to the bearing before and during removal.
13. Remove flangettes (C) and bearing.

! CAUTION: To prevent injury, two technicians are needed to keep roll balanced during removal.

14. Remove roll (A) by swinging forward and to right.

INSPECT CONDITIONER PARTS

1. Clean all parts thoroughly.
2. Inspect all parts for wear or damage. Replace if necessary.
3. Check sprockets for irregular wear patterns, nicks and broken teeth.
4. Check bearings for roughness and be sure they rotate freely.
5. Check roll shafts (A) for damaged splines or bearing surfaces. Replace shaft if necessary. (See Replace Roll Shaft in this section.)
6. Check urethane cleats (B) for damage which would affect crop conditioning.

REPLACE ROLL SHAFT

1. Remove roll. (See Remove Upper and Lower Roll in this section.)
2. Clean end thoroughly.
3. Measure half the distance between center and rim and mark a 108 mm (4.25-in.) circle.

4. Use acetylene torch to remove marked section.

IMPORTANT: Due to the possibility of fire, have a fire extinguisher, bucket of water and shop towels for keeping roll wet.
5. Check that roll end fits.
6. File torched area smooth.

IMPORTANT: Due to criticality of final runout, make certain all weld spatter and foreign material are removed from area of machined step.
7. Hold new roll end centered in end of roll.
8. Place four $6 \mathrm{~mm}(0.25-\mathrm{in}$.) fillet welds 38 mm ($1.5-\mathrm{in}$.) long.
9. Check runout. Total indicated runout CANNOT exceed $0.25 \mathrm{~mm}(0.010-\mathrm{in}$.) with center of dial indicator located 25 mm (1.0 in.) (A) from center of bearing.

IMPORTANT: If runout exceeds 0.25 mm ($0.010-\mathrm{in}$.) end and clean end thoroughly.
10. Repeat step 8 placing first weld directly across from high side.
11. Repeat step 9.

12. Place 6 mm (0.25 in .) fillet weld the circumference of roll end.
13. Check that final runout has not exceeded 0.25 mm (0.010-in.) TIR.

INSTALL CONDITIONER ROLLS

1. Install rolls in reverse order of removal using following special instructions.

IMPORTANT: Do not use NEVER-SEEZ or grease on roll shaft when installing bearing and sprocket.

- Install new bearings, do not reuse old bearings.
- Install bearings, SN (-934000), with relube hole aligned with lube fitting (A).
- Clean shaft thoroughly and apply John Deere Primer TY6305 to shaft.
- Apply John Deere Retaining

Compound T43515 on shaft (360 degrees) in the bearing area.

NOTE: Bearings used on machines SN(934001-) are sealed bearings, and flangettes do not have lube fittings (A).
2. Install left bearings and flangettes on shafts with grease fittings (A) in upper position. Place locking collars (B) on bearings. Do not tighten flange nuts or locking collars at this time.

NOTE: Roll opening strap removed for illustration only.
3. Install right roll arm and adjust clearance with side sheet. (See Install Conditioner Roll Arm in this section.)

IMPORTANT: Clean shaft thoroughly and apply John Deere Primer TY6305 to shaft. - Apply John Deere Retaining Compound T43515 on shaft (360 degrees) in the bearing area.

NOTE: Flangettes with grease fittings are used on machines (-934000).
4. Install lower right bearing and flangettes with grease fitting (A) pointing to the rear. Place locking collar (B) on bearing. Do not tighten carriage bolts or locking collar at this time.

IMPORTANT: Clean shaft thoroughly and apply John Deere Primer TY6305 to shaft. - Apply John Deere Retaining Compound T43515 on shaft (360 degrees) in the bearing area.

NOTE: Flangettes with grease fittings are used on machines (-934000).
Lube line (E) is used on machines (-934000)
5. Install upper right bearing and flangettes with grease hole up and elbow (C) with lube line pointing to rear. Place locking collar (D) on bearing. Do not tighten carriage bolts or locking collar at this time.
6. Rotate rolls and tighten carriage bolts holding flangettes in position.
7. Connect lube line to conditioner roll arm.

```
A-Grease Fitting
B-Lower Locking Collar
C-Elbow
D-Upper Locking Collar
E-Lube Line ( -934000)
```


(934001-)

NOTE: Do not reuse Nylock cap screws (B).
8. Install sprocket (A) and replacement cap screw (B) on lower conditioner roll. Tighten to $250 \mathrm{~N} \cdot \mathrm{~m}$ ($185 \mathrm{lb}-\mathrm{ft}$), then strike hub with hammer to seat on tapered shaft splines (C). Tighten to $250 \mathrm{~N} \cdot \mathrm{~m}$ (185 lb -ft).

NOTE: Do not reuse Nylock cap screws (B).
9. Install sprocket (A) and replacement cap screw (B) on upper conditioner roll. Tighten to $250 \mathrm{~N} \cdot \mathrm{~m}$ ($185 \mathrm{lb}-\mathrm{ft}$), then strike hub with hammer to seat on tapered shaft splines (C). Tighten to $250 \mathrm{~N} \cdot \mathrm{~m}$ ($185 \mathrm{lb}-\mathrm{ft}$).
10. Install reinforcement strap (D).
11. Install roll opening strap (E).

```
A-Sprocket
B-Nylock Cap Screw
C-Tapered Shaft Spline
D-Reinforcement Strap
E-Roll Opening Shaft
```


NOTE: Reinforcement strap removed for demonstration purposes.
12. Move conditioner rolls to align driven sprockets (A) with two drive chain idler sprockets (B) within plus or minus 3 mm (0.1 in .) (C) of centerline.
13. Tighten locking collars (D) on each end of shaft. (See Tighten Bearing Locking Collar in this section.)
14. Install conditioner drive chain. (See Replace Conditioner Roll Drive Chain in this section.)
15. Adjust roll spacing. (See Adjust Roll Spacing or Adjust Roll Tension in this section.)
16. Time rolls. (See Adjust Roll Timing in this section.)

A-Driven Sprockets B-Idler Sprockets
C-3 mm (0.1 in .) of Centerline
D-Locking Collars

EX,1474,4025,U-19-26APR93
13. Install shield (B) and tighten cap screws (A).

TIGHTEN BEARING LOCKING COLLAR

IMPORTANT: Overtightening of the locking collar may fail the bearing inner race.

1. Tighten all locking collars (A) on running shafts (C) in the direction of shaft rotation.
2. Tighten all locking collars on stationary shafts (D) in
 the opposite direction from that of bearing (B) rotation.

A-Locking Collar
B-Bearing
C-Running Shaft
D-Stationary Shaft

ADJUST ROLL SPACING

IMPORTANT: Roll stops control upper roll clearance with lower roll. Rolls should never be adjusted to allow contact during use or serious damage to machine may occur.

1. Attach mower-conditioner to tractor.
2. Place tongue in field operating position and lower machine to the ground.
3. Engage PTO tractor throttle at slowest engine speed.
$1!$
CAUTION: To avoid bodily injury while performing this adjustment:

- Keep all shields in place.
- Keep hands and clothing away from moving parts.
- Carefully follow procedure.

4. Stand behind machine and loosen jam nuts (A). Turn adjusting bolt (B) counterclockwise a quarter of a turn.
5. Continue turning bolt (B) counterclockwise a quarter turn until roll contact causes vibration and a rumbling noise.
6. Turn adjusting bolt (B) clockwise a quarter turn
7. Continue turning bolt (B) clockwise a quarter turn until the noise stops.
8. Turn an additional $3 / 4$ turn clockwise for minimum roll clearance.

IMPORTANT: Failure to tighten jam nut may allow rolls to contact causing machine damage.
9. Tighten jam nut (A).
10. Repeat procedure on opposite side.

ADJUST CONDITIONER ROLL PRESSURE

- Loosen jam nut (B).
- Decrease roll pressure by turning jam nut (A) clockwise to increase spring pressure.
- Increase roll pressure by turning jam nut (A) counterclockwise to release spring pressure.
- Tighten jam nut (B) against jam nut (A) to hold setting.

- Initial dimensions (C) are as follows;
Machine \quad (C) $\mathbf{m} \mathbf{5 m}$ (3/16 in.)
12 Foot $55 \mathrm{~mm}(2-5 / 16 \mathrm{in}$.
14 Foot $65 \mathrm{~mm}(2-9 / 16 \mathrm{in}$.
16 Foot $75 \mathrm{~mm}(2-15 / 16 \mathrm{in}$.

IMPORTANT: If bolt assembly is removed and lock nuts (A) and spacer (B) are removed from adjusting bolt..

- Apply John Deere Primer TY6305 to threads on adjusting bolt and lock nuts.
- Apply John Deere Retaining Compound T43515 to lock nuts (A) when assembling.

NOTE: Distance (C) from end of bolt to lock nut is 445
mm (17.5-in.).

ADJUST ROLL TIMING

IMPORTANT: Check roll spacing, sprocket alignment and chain tension before attempting to time rolls.

1. Lower machine to the ground.
2. Loosen nuts (A) on roll timing plates.
3. Turn roll until roll cleats are centered. Cleats are centered when there is equal space (B) between cleats.

NOTE: Timing marks on roll sprockets are used to check timing during set up and predelivery. They do not need to be realigned if sprockets are removed.
4. Tighten nuts (A).
5. Check to see that roll cleats are still centered. If not, readjust.

NOTE: If rolls will not time properly, index chain on the timing sprocket.

Section
 50 Carrier Frame

Page

Group 05-General Information

Carrier Frame Description 50-05-1
Specifications 50-05-1
Torque Values 50-05-1
Special Tools 50-05-2

Group 10—Diagnosing Malfunctions . . . 50-10-1

Group 15-Frame Components
Replace Conditioner Cross Shaft
$\begin{array}{lll}\text { Replace Swath Flap } & \text { 50-15-2 } \\ \text { Adjust Windrow Width } & \text { 50-15-2 }\end{array}$

Group 20-Tongue
Remove Tongue 50-20-1
Install Tongue 50-20-3

Group 25-Wheel Hub and Support
Lift and Support Carrier Frame 50-25-1
Recondition Wheel Hub 50-25-2
Replace Wheel Support 50-25-3
Inspect Wheel Support and Replace
Bushings . 50-25-5

Group 30—Electrical System
Warning Light 50-30-1

Install Warning Light 50-30-2
Install Weather Pack Contact 50-30-5
Electric Guard Angle Controller 50-30-6

Group 05 General Information

CARRIER FRAME DESCRIPTION

The platform and conditioner rolls are mounted on the carrier frame (A). The frame pivots on the tongue (B), and wheel supports (C) pivot to raise the frame.

Windrow forming shields (D) and an adjustable swath flap (E) control the size of the windrow.

A-Carrier Frame

B-Tongue
C-Wheel Support
D-Forming Shields
E-Swath Flap

SPECIFICATIONS

ITEM
Carrier Cross Shaft
MEASUREMENT
Endplay
Tongue Pivot Bushing
Position
Position
Position

Maximum 1.5 mm (0.06 in .)

SPECIFICATION

Flush to 0.8 mm (0.03 in .) into bore
Flush to $0.8 \mathrm{~mm}(0.03 \mathrm{in}$.) into bore
2 mm (0.078 in.) into bore

TORQUE VALUES

LOCATION $\mathrm{N} \cdot \mathrm{m}$ (lb-ft)
Carrier Frame Spindle 353 260
Wheel Bearing Nut 1.7 15
Wheel Bolts-12 FT. Machines 85
Wheel Bolts-14 and 16 FT.Machines 130 95

SPECIAL TOOLS

D01045AA — Driver set used to install bushings in tongue and wheel support.

DIAGNOSING MALFUNCTIONS

Symptom
Poorly formed windrows
Windrow bunching and
formation uneven

Problem
Extremely light crop.

Ground speed too slow.
Windrow forming shields catching material.

Crop is gathering on guards.

Reel not feeding properly in heavy crops.

Worn cutterbar components.

Too much gap between auger and stripper.

Reel too high.

Incorrect reel release.

Too much gap between conditioner rolls.

Solution

Decrease windrow width. (See Adjust Windrow Width in this section).

Increase ground speed.
Check bolt direction on forming shields. Put bolt heads to the inside if material is catching.

Check knife and guard wear. Replace worn out knife section and guards. (See Install Regular or Non-Clog Guards in Section 20.)

Add additional reel bat(s).
Move reel down and back so crop is carried over guards and into augers. (See Adjust Reel in Section 30.)

Adjust reel speed. (See Adjust Reel Speed in Section 30.)

Adjust reel position. (See Adjust Reel in Section 30.)

Add additional reel bat(s).
Replace. (See Install Regular or Non-Clog Guards in Section 20.)

Adjust stripper to maintain 2 to 4 mm ($0.1-0.2$ in.) clearance between stripper and auger. (See Adjust Upper and Lower Auger Stripper, and see Adjust Center Auger Stripper in Section 30.)

Lower reel until it barely clears the cutterbar and deck. (See Adjust Reel in Section 30.)

Adjust reel cam. (See Adjust Cam in Section 30.)

Adjust roll gap. (See Adjust Roll Spacing in Section 40.)

Group 15 Frame Components

REPLACE CONDITIONER CROSS SHAFT

1. Disconnect powershaft. (See Remove Powershaft in Section 30.)
2. Remove coupler chain (A).

3. Remove washers (A).

NOTE: Count washers (A) because they will be used for adjustment during assembly.
4. Remove cross shaft from bearing by pulling toward right side.
5. Remove flangettes (B), and bearing.
6. Check bearing for roughness.

7. Install cross shaft in reverse order of removal.
8. Install same number of washers which were removed from left end of shaft.
9. Install powershaft and adjust endplay, by adding or removing washers. (See Install Powershaft in Section 30.)

NOTE: Powershaft must be installed before coupler chain to position shaft correctly.
10. Install coupler chain (A) around sprockets and install connector link.
11. Loosen set screws (B) and slide cross shaft as far as possible on to motor shaft. Tighten set screws.

REPLACE SWATH FLAP

1. Raise flap (A) and disconnect spring (B).
2. Lower flap and disconnect adjuster lever (C).

3. Remove two carriage bolts and retainer angle (A).
4. Install in reverse order.

EX, 1474,5015,E -19-26APR93

ADJUST WINDROW WIDTH

Adjust lever (A) to change windrow width.
To make wider windrows, adjust lever (A) down; to make narrow windrows adjust lever up.

REMOVE TONGUE

NOTE: Draining the hydraulic drive system is not necessary when removing tongue.

1. Park machine on level area with tongue straight forward, and lower platform.
2. Adjust upper link (A) so pivot spindle is vertical.
3. Disconnect electrical harnesses from tongue. Remove hydraulic hose tie bands.

4. Support tongue (A) with hoist.

5. Remove hose tie band (A) and pins (B) from swing cylinder (C). Wire cylinder to left side of tongue.
6. Disconnect lift cylinder hose at connection under right side of carrier frame and plug open lines.
7. Remove vent tube (D) from clamps under frame and remove clamps from right side of tongue.

A-Tie Band
B-Pin
C-Swing Cylinder
D-Vent Tube

8. Remove coupler chain (A) and disconnect cross shaft (B) from motor (C).
9. Disengage conditioner roll drive chain from motor sprocket. It is not necessary to remove chain from machine. (See Remove Conditioner Roll Drive Chain in Section 40.)
10. Remove two cap screws (D) and remove motor from carrier frame. Bolt motor to side of tongue using top vent hose clamp location.

A-Coupler Chain
B-Cross Shaft
C-Motor
D-Cap Screws
11. Remove cap screw, hold-down (A), and five flat washers (B) from spindle.

A
CAUTION: Use two technicians when removing tongue to keep it balanced and to prevent injury.
12. Lift tongue from carrier frame.

1. Check pivot bushings (A) for excessive wear or damage. Remove if necessary.
2. Drive replacement bushings into bore using 4 in. and $4-3 / 16$ in. driver disks. Press both bushings flush to 0.8 mm (0.03 in .) into inner support of bore.
3. Check swing cylinder bushing and replace if necessary. Press bushing flush to 0.8 mm (0.03 in .) into bore.
4. Install tongue in reverse order of removal using the following instructions.
5. Grease spindle and bushing before installing tongue.

IMPORTANT: Five washers must be placed between pivot spindle and hold-down to prevent binding of hold-down with tongue.
4. Tighten hold-down cap screw to $353 \mathrm{~N} \cdot \mathrm{~m}$ ($260 \mathrm{lb}-\mathrm{ft}$).

LIFT AND SUPPORT CARRIER FRAME

4
CAUTION: To prevent the carrier frame from becoming unstable, insure the jack stand on the tongue is functioning and steady. Lift only one side of the carrier frame at a time.

IMPORTANT: Do not lift carrier frame using the conditioner roll arm (C).

- If using an overhead hoist to lift the carrier frame, position hook (A) between pin (B) and carrier frame as shown.
- If using a hydraulic floor jack to lift the carrier frame, position hydraulic floor jack (E) under carrier frame (D) as shown.

1. Lift carrier frame (D).

A
CAUTION: Position jack stand (F) directly under the center of the lower conditioner roll (G), as the conditioner roll may rotate.
2. Position jack stand (F) under the lower conditioner roll (G) as close to the end of the roll as possible.
3. Lower carrier frame onto jack stand.

[^4]Overhead Hoist

Hydraulic Floor Jack Shown

RECONDITION WHEEL HUB

1. Raise carrier frame. (See 'LIFT AND SUPPORT CARRIER FRAME' in this section and group.)
2. Remove wheel and hub cap (A).
3. Remove cotter pin, adjusting nut (B), and retaining washer.
4. Remove wheel hub with two bearings.

5. Inspect bearings (E,I) for roughness or damage. Check seal (J) and bearing cups (F, H) for nicks or damage. Replace damaged parts.
6. If removed, press bearing cups into hub against shoulders. Press seal flush into hub.
7. Pack bearings with wheel bearing grease and install on shaft with hub.
8. Tighten adjusting nut to $1.7 \mathrm{~N} \cdot \mathrm{~m}$ ($15 \mathrm{Ib}-\mathrm{in}$). Back off to first castellation and install cotter pin.
9. Install wheel and torque bolts to $115 \mathrm{~N} \cdot \mathrm{~m}$ ($85 \mathrm{lb}-\mathrm{ft}$).

10. Check that wheel spins freely and install hub cap.
11. Lower machine to ground.

> A-Hub Cap
> B-Cotter Pin
> C-Slotted Nut
> D-Retaining Washer
> E-Bearing Cones
> F-Bearing Cup
> G-Hub
> H—Bearing Cup
> I-Bearing Cone
> J—Seal

RECONDITION WHEEL SUPPORT

1. Move machine to level area.
2. Lower platform to ground.
3. Disconnect powershaft U-joint from power shaft on carrier frame. (See Remove Powershaft in Section 30.)

IMPORTANT: Pivot platform forward before removing wheel supports to prevent roll damage from contact with platform.

IMPORTANT: Support platform when removing upper link. Supporting platform at center of the knockdown bar can bend bar.
4. Support platform at both ends of the knockdown bar.
5. Loosen jam nut and float spring adjustment bolt (B).

Remove float spring (C).

A-Upper Link
B—Bolt
C-Float Spring
D—Downstop Cable
! CAUTION: Wheel support is heavy and weighted to side with the wheel spindle. Floor jack (A) will help support the lower lift link (B) and wheel support (C) during removal.
10. Position floor jack (A) under lower lift link (B) and wheel support (C), as shown.
11. Raise floor jack until there is light pressure on the lower lift link.
12. Remove cotter pin, pin (D), and spacer.
13. Disconnect lower end of roll opening strap (E).
14. Remove pin (F) to disconnect cylinder rod.
15. Remove lock nut (H) and pivot pin (G). Remove wheel support (C).
16. To install wheel support, reverse steps 1 through 15 with the following added note:

- Tighten lock nut (H) then back off one (1) complete turn.

A-Floor Jack
B—Lower Lift Link
C-Wheel Support
D-Pin
E—Strap
F-Pin
G-Pivot Pin
H—Lock nut

INSPECT WHEEL SUPPORT AND REPLACE BUSHINGS

IMPORTANT: Replace the wheel support, if cracks are found in the weld areas, the pivot hole is damaged, or the wheel support shows wear due to bushing failure.

1. Inspect wheel support for damage. Check lower link pivot holes (C) for excessive wear.
2. Check welds (A) and (B), on both sides of wheel support, for cracks.
3. Remove and discard worn or scored bushings (D).
 Inspect wheel support for wear due to bushing failure.

A-Weld
B-Weld
C-Pivot Hole
D-Bushing

NOTE: Install bushings (A) from both sides. Edge of bushing must be flush with wheel support (B).
4. Install new bushings, using a $1-5 / 8$ in. bearing driver.

NOTE: Recess both bushings. Edge of washer (A) must be flush with wheel support (B).
5. Position $1-7 / 16 \times 1-7 / 8 \times 5 / 64 \mathrm{in}$. washer (A) over bushing.
6. Recess bushing into wheel support, using 1-1/4 in.

ID bearing driver.

7. Insure bushing (A) is 2 mm (5/64 in.) below edge (B) of wheel support.
8. Apply a liberal coating of SAE Multipurpose EP grease to the bushing surfaces.

WARNING LIGHTS

Platform

Tongue

```
A-Tractor Outlet B-Platform Harness C-Tongue Harness
```

23-Yellow Lead (Right Light) 26A-White Lead (Ground)

The warning lights provide four way hazard lights, and right or left turning lights.

The system connects to the tractor with a standard seven terminal electrical outlet socket.

D-Left Warning Light E-Right Warning Light 22-Green Lead (Left Light)

26-White Lead (Ground) 26B-White Lead (Ground)

The system is simple in design and should not represent any difficulties in diagnosing or repairing a system malfunction.

INSTALL WARNING LIGHTS

1．Move nut（A）to the end of the threads on light assembly（B）．

2．Install light assembly in slot（C）on guard（D）．Do not tighten nut（A）at this time．

$$
\begin{aligned}
& \text { A—Nut } \\
& \text { B—Light assembly } \\
& \text { C-Slot } \\
& \text { D-Guard } \\
& \text { E—Clip }
\end{aligned}
$$

3．Install connector，lead，and nut through hole（A）．
4．Make sure guard (B) is not resting on round head bolt 30 （C）．

IMPORTANT: Install clip with crimp next to nut. Failure to do so will cause the light assembly to loosen and fall off.
5. Install clip (A) between nut (B) and panel (C). Tighten nut (B).
6. Connect light assembly to wiring harness.

SPECIAL OR ESSENTIAL TOOLS

NOTE: Order tools according to information given in the
U.S. SERVICE-GARD ${ }^{\text {TM }}$ Catalog or in the

European Microfiche Tool Catalog (MTC).
Extraction Tool JDG364
Remove contacts from Weather Pack electrical
connectors.

REPLACE WEATHER PACK ${ }^{\text {M }}$ CONNECTOR

IMPORTANT: Identify wire color locations with connector terminal letters.

1. Open connector body (A).

2. Insert JDG364 Extraction Tool over terminal contact in connector body.

3. Hold extractor tool fully seated and pull wire from connector body.

NOTE: If terminal cannot be removed, insert wire or nail through extractor tool handle and push terminal contact from connector.

IMPORTANT: Carefully spread contact lances to

 assure good seating on connector body.NOTE: Connector bodies are "keyed" for proper contact mating. Be sure contacts are in proper alignment.
4. Push contact into new connector body until fully seated.
5. Pull on wire slightly to be certain contact is locked in place.

6. Transfer remaining wires to correct terminal in new connector.
7. Close connector body.

INSTALL WEATHER PACK CONTACT

NOTE: Cable seals are color coded for three sizes of wire:

- Green - 18 to 20 gauge wire
- Gray - 14 to 16 gauge wire
- Blue - 10 to 12 gauge wire

1. Slip correct size cable seal on wire.
2. Strip insulation from wire to expose 6 mm (1/4 in.)
 and align cable seal with edge of insulation.

NOTE: Contacts have numbered identification for two sizes of wire:

- \#15-14 to 16 gauge wire
- \#19-18 to 20 gauge wire

3. Place proper size contact on wire and crimp contact in place with a "W" type crimp.

4. Position cable seal and contact as shown, and crimp.

IMPORTANT: Proper contact installation for "sleeve"

(A) and "pin" (B) is shown.

ELECTRICAL GUARD ANGLE CONTROLLER

The electric guard angle controller is powered from the tractor convenience outlet. A three position switch in the control console directs power to the actuator to change the position of the platform.

1. Check tractor electrical system for a minimum 12 volts.
2. Remove control console from mounting plate to expose switch terminals.
3. Turn tractor key switch on and check for battery voltage between console switch terminals 1 and 4, and between 3 and 6 . Check convenience outlet or harness to console if no voltage.
4. Disconnect console from convenience outlet and actuator harness. Check for continuity between terminals indicated below:

Control Switch in Neutral:
No continuity between any terminals
Control Switch in Retract Position

(Decrease Guard Angle):
Continuity between 2 and 3
Continuity between 5 and 6
Control Switch in Extend Position
(Increase Guard Angle):
Continuity between 1 and 2
Continuity between 4 and 5
Replace switch if incorrect continuity.
5. Connect console to convenience outlet and actuator harness. Check for correct voltage at connector to actuator (A).

Control Switch in Neutral:
Red Wire - No Voltage
Green Wire - No Voltage
Control Switch in Retract Position
(Decrease Guard Angle):
Red Wire - No Voltage
Green Wire - Battery Voltage

Control Switch in Extend Position (Increase Guard Angle):

Red Wire - Battery Voltage
Green Wire - No Voltage
If voltage is incorrect, check connectors, switch, and harness. If voltage is correct, replace actuator.
6. Check current flow at connector to actuator if circuit breaker opens repeatedly. Maximum allowed current draw is 17 amps. Replace actuator if draw is excessive.

Section 60 Hydraulics

Contents

Page
Group 05-General Information
Hydraulic Drive 60-05-1
Steering and Platform Lift 60-05-2
Specifications 60-05-3
Torque Values 60-05-3
Special Tools 60-05-4
Group 10—Diagnosing MalfunctionsGroup 15-Hydraulic TestsPreliminary Checks60-15-1
Diagnostic Procedure 60-15-2
Install Flow Meter 60-15-3
Warm Hydraulic Oil 60-15-4
Check Relief Pressure 60-15-5
Check Flow 60-15-5
Check Pump Case Drain 60-15-6
Check Motor Case Drain 60-15-7
Group 20-Hydraulic Pump
General Information 60-20-1
Remove Pump 60-20-2
Disassemble Pump 60-20-3
Disassemble Piston Block 60-20-5
Inspect Pump 60-20-7
Assemble Piston Block 60-20-7
Assemble Pump 60-20-8
Install Pump 60-20-11
Group 25-Planetary Gear Case
Disassemble and Inspect Planetary Gear Case 60-25-1
Assemble Planetary Gear Case 60-25-6
Group 30-Hydraulic Motor
General Information 60-30-1
Remove Motor 60-30-1
Disassemble Motor 60-30-2
Inspect Motor 60-30-5
Assemble Motor 60-30-6
Install Motor 60-30-8
Group 35-Relief Valve and Filter
General Information 60-35-1Page

HYDRAULIC DRIVE

展 LOW PRESSURE OIL MIGH PRESSURE OIL

A-Motor	D—Planetary Gear Case and
B—Relief Valve	Pump
C-Pressure Line	E-Pump Drain Line

The reservoir (G) for the hydraulic drive system is the mower-conditioner tongue assembly.

IMPORTANT: The 540 and 1000 rpm planetaries and pump housings must not be interchanged.

Oil is drawn from the reservoir (G), through the suction line (F), by a PTO driven planetary and pump (D). The 540 rpm planetary has a four-to-one ratio which provides 2160 rpm at the pump. The 1000 rpm planetary has a three-to-one ratio giving 3000 rpm at the pump. Output is $81 \mathrm{~L} / \mathrm{min}(21.5 \mathrm{gpm})$ at rated speed on both pumps. Normal leakage from the pump lubricates the planetary, and then returns to the reservoir through a drain line (E).

A pressure line (C) located along the tongue routes the oil to the relief valve (B) and then to the motor

F-Suction Line	I-Motor Return Line
G-Reservoir	J-Motor Drain Line
H-Filter	

(A). The relief valve opens at 27580 kPa (276 bar) (4000 psi) to protect the machine if the motor stalls due to an obstruction in the conditioner rolls or platform. The valve is not adjustable and is non-repairable. Oil going over relief is diverted to the reservoir.

Normal oil flow is from the relief valve (B) to the motor (A), which rotates at 1176 rpm when the pump is running at rated speed. Leakage from the motor is routed to the filter base through a drain line (J).

Return oil from the motor (A) flows through the return line (I), a ten micron full flow filter (H), to the reservoir (G). If the filter becomes restricted, a bypass valve which operates on pressure differential allows oil to go around the filter.

STEERING AND PLATFORM LIFT

A-Hose Couplers
B—Master Cylinder
C-Slave Cylinder D—Rephasing Orifice

Carrier frame movement is controlled by tractor hydraulics.

Oil from a tractor hydraulic outlet (A) operates the single acting master cylinder (B) and slave cylinder (C) to raise the machine. A rephasing orifice (D) on the rod end of the master cylinder allows the slave cylinder to fully extend when the tractor operating lever is held in the extend position. The rephasing orifice (E) on the barrel end of the master cylinder

E-Rephasing Orifice
F-Steering Cylinder
G-Orifice
allows the slave cylinder to fully retract when the tractor lever is held in the retract position. These orifices keep the platform level during operation. Minimum pressure of 13740 kPa (138 bar) (2000 psi) is required to raise the platform.

A second tractor outlet is used to pivot the machine with a double acting steering cylinder (F). The orifice (G) in the barrel end of the cylinder restricts flow to limit extend and retract speeds.

SPECIFICATIONS

ITEM	MEASUREMENT	SPECIFICATION
Pump (540 rpm)	Displacement	$45.4 \mathrm{~cm}^{3}$ (2.77 cu in)
Pump (1000 rpm)	Displacement	$32.9 \mathrm{~cm}^{3}$ (2.01 cu in)
Pump (540 rpm)	Speed	2160 rpm
Pump (1000 rpm)	Speed	3000 rpm
Pump	Output	$81 \mathrm{~L} / \mathrm{min}(21.5 \mathrm{gpm}) @$ rated speed
Motor	Displacement	$82.6 \mathrm{~cm}^{3}$ (5.04 cu in)
Motor	Speed	1176 rpm
Hydraulic Drive	Relief Pressure	27579 kPa (276 bar) (4000 psi)
Normal Operating Temperature	Degrees	65-107 ${ }^{\circ} \mathrm{C}$ (150-225 $\left.{ }^{\circ} \mathrm{F}\right)$
Maximum Pump Leakage	Flow	$19 \mathrm{~L} / \mathrm{min}(5.0 \mathrm{gpm})$ @ rated speed 20684 kPa (207 bar) (3000 psi)
Maximum Motor Leakage	Flow	$3.8 \mathrm{~L} / \mathrm{min}(1.0 \mathrm{gpm})$ @ rated speed, no load, and $65^{\circ} \mathrm{C}\left(150^{\circ} \mathrm{F}\right)$
Filter	Filtration	10 Micron Full Flow
Reservoir	Volume	12-Ft (3.66 m) - 95 L (25 gal)
		14-Ft (4.27 m) - 95 L (25 gal
		16-Ft (4.88 m) - 102 L (27 gal)
Planetary Gear to Shaft	Radial Movement	Maximum 0.127 mm (0.0050 in.)
Planetary Gear	Inside Diameter	Maximum 0.19 mm (0.755 in.)
Motor Flange to Inside of Sprocket	Distance	$62-65 \mathrm{~mm}$ (2.4-2.6 in.)

TORQUE VALUES

LOCATION $\mathrm{N} \cdot \mathrm{m}$ (lb-ft)
Pump Front Plate 22 16
Pump to Planetary 75-81 55-60
Motor Back Plate 22 16
Motor to Side Sheet 102 75

D01169AA - In-Line hydraulic tester with hoses.

- Used to check relief valve pressure, leakage at the pump, and oil temperature.

JT05470 - Pressure gauges and fittings.

- Used to check relief pressure.

JT05713 - Hydraulic pump parts tray.

- Used to identify pistons when disassembling hydraulic pump and motor.

60 D01045AA - Driver set.
05 - Used to install seals in pump and motor.

DIAGNOSING MALFUNCTIONS

Symptom
Conditioner rolls turning
slow or stop.

Motor turns while unloaded, but slows or stops when loaded
Hydraulic motor vibration

Pump noise

Excessive power required in heavy, down crop

Oil heating

Problem
Conditioner rolls plugging.

Hydraulic failure

Low relief valve pressure.

Excessive motor case drain rate.
Excessive pump case drain rate.
Hardware that mounts motor is loose.

Worn chain coupler.
Bent cross shaft.
Low hydraulic fluid.
Restricted suction line.

Hydraulic fluid too thick in cold weather.

Pressure in hydraulic circuit approaching relief setting.

Crop is pulled into hay conditioner before it is cut off.

Low oil.
Contaminated oil.
Dirty filter.
Oil too light.
Relief valve malfunction.

Solution

Slow ground speed

Decrease roll pressure adjustment
Check drive system adjustments
See TEST HYDRAULIC DRIVE SYSTEM in this Section, Group 15.

Replace relief valve cartridge and O-rings.

Repair motor.
Repair pump.
Tighten hardware.

Replace.
Straighten or replace.
Check and add fluid as necessary.
Check pump inlet and suction hose for kink or plug.

Check if correct hydraulic fluid. Run with no load until machine is warm.

Slow ground speed.

Install adjustable roll pressure kit. Decrease conditioner roll pressure.

Fill reservoir. Check for leaks.
Drain and refill with clean oil.
Replace.
Replace oil with proper viscosity oil.
Replace.

Symptom	Problem	Solution
	Tractor PTO running too fast.	Operate at rated PTO speed.
Foaming oil	Crop volume too high.	Operate at slower ground speed.
	Low oil.	Fill reservoir.
	Wrong kind of oil.	Replace with correct oil.
Platform swings too fast (or too slow)	Incorrect tractor hydraulic flow control setting.	Adjust setting. See tractor Operator's Manual
Platform will not swing or raise.	Inadequate hydraulic pressure from tractor.	Check pressure. See tractor Operator's Manual.
	Hydraulic hoses not fully engaged.	Install hoses fully in tractor hydraulic outlet and open tractor hydraulic coupler valve
(where applicable).		

PRELIMINARY CHECKS

Many hydraulic system failures can be located by making preliminary checks of the mower-conditioner hydraulic system.

No special tools are required to make these preliminary checks, so repair obvious failures before making further tests.

1. Become acquainted with the hydraulic system and its components. Read the latest SERVICE INFORMATION BULLETINS on mower-conditioners.
2. If possible, talk with the operator about how the machine was performing when it failed.
3. With the machine shut off, check for evidence of external oil leakage around oil seals, castings, or hydraulic line connections. Check for pinched or kinked lines and hoses that could restrict oil flow and cause oil to heat.
4. Check for broken drives, broken or binding linkages, or other mechanical failures.
5. Check hydraulic oil level and determine the type of hydraulic oil used.
6. Check quality of oil for milky, dirty, or discolored condition. Smell the oil. A distinctive burned odor
indicates excessive heat that can destroy the lubricating qualities of the oil. Determine the cause of the condition, correct it, and change the oil.
7. Check for a damaged hydraulic oil filter. A faulty filter will permit oil to bypass the system, affecting system operation and tests. If the filter is plugged, an examination of the contaminant may indicate the cause of the failure.
8. Check mower-conditioner maintenance records to determine if the recommended service procedures have been made at the specified intervals. Note previous reports of unusual, frequent, or similar failures.
9. If possible, operate the mower-conditioner. Use the hydraulic functions and be alert for conditions that could isolate the problem. Also be alert for conditions that could cause further damage, and be prepared to stop the tractor immediately.

I CAUTION: Keep hands away from moving parts. Shut off tractor before checking lines near moving parts.

If preliminary checks do not locate cause of hydraulic drive problems, make tests indicated in this section.

INSTALL FLOW METER

A flow meter can be used to create a restriction for warming oil, checking relief pressure, or checking pump case drainage.

CAUTION: Install flow meter as instructed to prevent bodily injury and possible failure of the mechanical drives.

IMPORTANT: Flow meter must be equipped for testing a 41400 kPa (414 bar) (6000 psi) system. and registering hydraulic oil temperature. (See ESSENTIAL TOOLS this Section.)

1. Disconnect motor supply hose (A) and install on INLET port (C) on flow meter.
2. Disconnect motor return hose (B) and install on
 OUTLET port (D) on flow meter.

A-Supply hose
B-Return hose
C-INLET port
D-OUTLET port

WARM HYDRAULIC OIL

Normal operating temperature is $65-107^{\circ} \mathrm{C}$ ($150-225^{\circ} \mathrm{F}$). Oil temperature increases with increasing machine load and increasing ambient temperature. Lack of air movement around the machine also causes temperature to increase.

IMPORTANT: Do not warm oil by deliberately stalling machine to exceed relief valve setting. Damage to system can result.

1. Install flow meter. (See INSTALL FLOW METER in this Section.)
2. Operate PTO at rated speed.
3. Slowly close valve (A) on flow meter until 20684 kPa (207 bar) (3000 psi) registers on pressure guage (B).
4. Warm oil to $63-68^{\circ} \mathrm{C}\left(145-155^{\circ} \mathrm{F}\right)$ on temperature guage (C).
5. Maintain oil temperatures within $6^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$ of each
other during each test.

CHECK RELIEF PRESSURE

1．Install flow meter．（See INSTALL FLOW METER in this Section．）

2．Warm hydraulic oil．（See WARM HYDRAULIC OIL in this Section．）

3．Operate PTO at rated speed．
IMPORTANT：Do not exceed 28958 kPa（290 bar）
 （4200 psi）．
Excessive pressure indicates relief valve will not open and requires replacement．
Do not run hydraulic system in relief longer than thirty seconds to prevent damage from oil heating．

NOTE：When system goes over relief the oil flow will stop and the guage（C）will register＇ 0 ＇．

4．Slowly close valve（A）on flow meter，until system goes over relief．

5．Check relief valve pressure on gauge（B）immediately． Specification is $26200-28958 \mathrm{kPa}$（262－290 bar）
（3800－4200 psi）．
6．Open valve as soon as reading is taken．

CHECK FLOW

1．Install flow meter．（See INSTALL FLOW METER in this Section．）

2．Warm hydraulic oil．（See WARM HYDRAULIC OIL in this Section．）

3．Operate PTO at rated speed．
4．Slowly close valve（A）on flow meter until 20684 kPa （207 bar）（3000 psi）registers on pressure guage（B）．

5．Check flow guage（C）．Minimum flow should be 81 L／min（ 21.5 gpm ）

CHECK PUMP CASE DRAIN

1. Install flow meter. (See INSTALL FLOW METER in this Section.)
2. Warm hydraulic oil. (See WARM HYDRAULIC OIL in this Section.)

NOTE: Reservoir will totally drain if pump drain line (A) is not capped.
3. Disconnect pump drain line (A) at pump and quickly cap hose to tongue. Install another hose on pump drain port to make test.
4. Operate PTO at rated speed.
5. Slowly close valve (B) on flow meter until 20684 kPa (207 bar) (3000 psi) registers on pressure guage (C).
6. Place hose installed on pump drain port in bucket and measure flow for sixty seconds.
7. Maximum drainage for sixty seconds should be 19 $\mathrm{L} / \mathrm{min}(5.0 \mathrm{gpm})$.

CHECK MOTOR CASE DRAIN

1. Install flow meter. (See INSTALL FLOW METER in this Section.)
2. Warm hydraulic oil. (See WARM HYDRAULIC OIL in this Section.)
3. Remove flow meter.

CAUTION: The machine will be operating during this procedure.

Insure all shields are in place.
Use a hose long enough to clear the platform and carrier frame.

NOTE: Reservoir will totally drain if motor drain line (A) is not capped.
4. Disconnect motor drain line (A) at motor and quickly cap hose to tongue. Install another hose on motor drain port to make test.
5. Operate PTO at rated speed.
6. Place hose installed on motor drain port in bucket and measure flow for sixty seconds.
7. Maximum drainage for sixty seconds should be 3.8 L/min (1.0 gpm).

Group 20 Hydraulic Pump

GENERAL INFORMATION

A-Shaft

B-Cylinder Block
A PTO driven axial piston pump operates the hydrostatic drive of the mower-conditioner.

The shaft (A) rotates the cylinder block (B) forcing the pistons (C) up the swashplate ramp (D). Oil is pressurized and routed to the motor.

The 540 rpm pump has a $45.4 \mathrm{~cm}^{3}$ (2.77 cu . in.) displacement and operates at 2160 rpm .

C-Piston

The 1000 rpm pump has a $32.9 \mathrm{~cm}^{3}$ ($2.01 \mathrm{cu} . \mathrm{in}$.) displacement and operates at 3000 rpm .

Output is $81 \mathrm{~L} / \mathrm{min}(21.5 \mathrm{gpm})$ on both pumps.
The pump is located at the front of the tongue and is attached to the planetary gear case which mounts on the tractor PTO shaft.

REMOVE PUMP

1. Remove Pump (A) from tractor PTO and place on transport stud (B).
2. Drain complete hydraulic system.
3. Remove suction (C) and high pressure hoses (D) from pump.
4. Remove hose from planetary gear case (E).

A-Hydraulic Pump

B-Stud
C-Suction Hose
D-Pressure Hose
E-Planetary Gear case

5. Drain oil from pump and planetary housings.
6. Remove two cap screws (A) from pump (B) and lift pump from planetary gear case (C).

DISASSEMBLE PUMP

1. Remove snap (A) from drive shaft (B) and slide gear (C) from shaft.
2. Remove second snap ring (A).

A
CAUTION: End cap is under spring tension and may move out of housing as cap screws are loosened.
3. Remove six $5 / 16 \times 1$-in. cap screws from backplate (A).
4. Use a plastic mallet to loosen backplate. Pull backplate straight out of pump housing.

5. Remove O-ring (A) from backplate (H).
6. Remove the complete piston block assembly (B) from the housing (C) and shaft.

IMPORTANT: Mark pistons and piston block before removing pistons. Replace each piston in its original bore during assembly to prevent a slight loss of performance.
7. Remove thrust race (D), pistons (E), spider (F), and pivot (G) from piston block assembly.
Λ
CAUTION: Do not remove snap ring from piston block (B) at this time. Removing snap ring will cause spring to fly from block and could cause personal injury. Follow procedure in Disassemble Piston Block, this group, if spring is to be removed from the piston block.

NOTE: The piston block does not need to be disassembled unless the pins or spring are damaged.

> A-O-Ring
> B-Piston Block
> C-Housing
> D-Thrust Race
> E-Pistons
> F-Spider
> G-Pivot
> H—Backplate
8. Remove snap ring from housing (A).
9. Remove shaft seal (B) from housing. Replace with new seal during assembly.
10. Remove washer (C) from housing.
11. Remove drive shaft (D) from housing.
12. Remove the two snap rings (E), thrust washers and thrust bearing (F) from drive shaft.

```
A-Housing
B-Shaft Seal
C-Washer
D-Drive Shaft
E-Snap Ring
F-Washers and Bearing
```


DISASSEMBLE PISTON BLOCK

Two 3/8 I.D. X 1-1/8 in. O.D. washers, one 3/8 x 3-1/4 in. cap screw and one $3 / 8$-in. nut will be needed to remove spring.

1. Place one flat washer (A) over the cap screw (B) and insert cap screw through center of piston block.
2. Place remaining washer over cap screw and let it rest on three pins on back of piston.
3. Thread nut on cap screw and compress spring (C).
4. Remove internal snap ring (A).
5. Remove cap screw and two flat washers installed previously.
6. Remove washers (B), spring (C), three pins (D), and pin keeper from block (E).
```
A-Snap Ring
B-Washers
C-Spring
D-Pins
E-Block
```


1-Snap Ring (2 Used)
2-Gear
3-Internal Snap Ring
4-Shaft Seal
5-Washer
6-Snap Ring (2 Used)
7-Thrust Washer
\quad (2 Used)

8-Thrust Bearing
 9-Drive Shaft
 10-Bearing
 11-Housing
 12-Thrust Race
 13-Pistons
 14-Spider

15-Spider Pivot
16-Piston Block
17-Pin Keeper
18-Loading Pin (3 Used)
19-Washer (2 Used)
20-Compression Spring

21-Snap Ring
22-O-Ring
23-Bearing
24-Backplate
25-Socket Screw (6 Used)

Hydraulic Pump

INSPECT PUMP

1. Wash all parts in clean solvent.
2. Examine needle bearings (10 and 23) in housing and backplate. If needles are free of excessive play and are still in bearing cage, there is no need to replace bearing.
3. Inspect thrust washers (7) and bearing (8). All surfaces should be free of any signs of wear.
4. Inspect spider (14) and pivot (15). Conical surfaces should be free of wear and score marks.
5. Inspect pistons (13). The O.D. surfaces should be smooth and free of scoring. Slippers should fit snugly to the piston. Slipper faces should be flat and free of scoring and flaking.
6. Inspect piston block (16). Bores should be free of scoring. The surface that contacts the backplate should be smooth and free of grooves or metal buildup.
7. Inspect the thrust race (12). Surface should show no signs of scoring or grooves.
8. Replace damaged or worn parts. Replace complete pump if major repairs are needed.

ASSEMBLE PISTON BLOCK

Install one washer, spring and second washer. Use the two $3 / 8$-in. I.D. flat washers (A) and the $3 / 8 \times 3-1 / 4 \mathrm{in}$. cap screw (B) to compress the spring. Install snap ring (C) into piston block. Remove cap screw and flat washers.

ASSEMBLE PUMP

1. Install snap ring (A) on outer groove of shaft. Slide one washer, thrust bearing and second washer (B) on shaft. Install snap ring in inner groove on shaft.

2. Install shaft in housing. Install washer on shaft. Oil I.D. of new shaft seal (A) and press into housing. Retain with snap ring (B).
3. Install small snap ring (C) into rear groove on drive shaft splines.

4. Place pivot (A) on piston block (B).
5. Install spider (C) and piston (D) assemblies in piston block. Reinstall each piston in its original bore.
6. Lubricate thrust race and install with grooved side toward housing (E).
7. Align splines of pivot and piston block. Slide onto drive shaft.
8. Piston slippers must contact thrust race. Be certain all parts are in their proper position.

A-Pivot
B-Piston Block
C-Spider
D-Pistons
E-Housing

9. Install new O-ring on backplate (A) and install backplate by locating spring pin in hole in housing.
10. Install six cap screws and tighten to 20 to $24 \mathrm{~N} \cdot \mathrm{~m}$ (15 to 18 lb -ft).

11. Slide drive gear (A) onto drive shaft and secure with snap ring (B).
12. Install new O-ring (C) onto housing assembly.

INSTALL PUMP

1. Engage pump drive shaft gear to gear case gears. Position suction port 90 degrees counterclockwise from drain port when viewed from pump end. Use two cap screws (A) to secure pump (B) to planetary housing (C). Tighten cap screws to $75-81 \mathrm{~N} \cdot \mathrm{~m}$ (55-60 lb-ft).
2. Connect all lines, change filter, and fill tongue with John Deere HY-GARD Transmission/Hydraulic Oil.

NOTE: Capacity is 95 L (25 gal) on 12-ft (3.66 m) and $14-\mathrm{ft}(4.27 \mathrm{~m})$ machines, and 102 L (27 gal) on 16 -ft (4.88 m) machines.
3. Lubricate splines with grease and install on tractor PTO shaft.

IMPORTANT: Install gear case with drain hose up to insure planetary lubrication.

4. Start tractor and run mower-conditioner slowly with no load for one minute to bleed air. Check hose connections and recheck oil level.
5. Run at full PTO speed for one minute and check operation.

NOTE: Do not run machine without load for long periods of time because it results in excessive wear.
6. Change filter after ten hours of operation.

DISASSEMBLE AND INSPECT PLANETARY GEAR CASE

1. Drain oil and remove pump from planetary gear case.
2. Remove adapter plate (A) and O-ring (B) from housing (C).

3. Remove four cap screws and washers (A) from front plate (B). Remove housing (C).
4. Remove O-ring (D) from front plate.

A-Cap Screws and Washers
B-Front Plate
C-Housing
D-O-Ring

5. Check for excessive wear in one or more bushings.

Measure each gear as follows:

- Mount the dial indicator as shown.
- Push the gear radially inward toward the axis of the carrier with finger force and zero the dial indicator.
- Push the gear radially outward and record the total movement.
- Rotate the gear 90 degrees and repeat the measurement.
- Replace the gear case if any measurement is equal to or greater than 0.127 mm (0.0050-in.)

6. Check for evidence of bushing extrusion between the gear and housing.
7. Continue disassembly if gears do not rotate freely.
8. Replace damaged or worn parts.
9. Remove snap ring (A) from front plate (B) with screwdriver (C).

10. Remove snap ring and shaft seal (A). It is necessary to destroy seal to remove. Replace with new seal when reassembling.
11. Remove snap ring (B) from carrier shaft. Remove carrier and gear assembly (C) from front plate (D). The carrier shaft is a light press fit in the bearing.

A-Snap Ring and Seal

B-Snap Ring
C-Carrier and Gear Assembly
D-Front Plate

12. Remove snap ring (A) from front plate (B).
13. Remove bearing (C) from front plate. Inspect the bearing. It should roll freely.

14. Press dowel pin shafts (A) from the carrier (B) and remove gears (C).

15. Wash all parts in clean solvent.
16. Inspect carrier for damage to stop ring (A).
17. Inspect plug (B) and O-ring (C) for signs of leakage.
60
25
18. Inspect pins (13), gear teeth (12), and internal teeth in housing (14). Check pins and teeth for chipping or excessive wear.

10-Snap Ring (Stop)
11-Carrier
12-Gears (3 Used)
13-Shafts (3 Used)
19. Replace gear if I.D. exceeds 19.2 mm (0.755 in .).
1-Snap Ring
2—Seal
3—Cap Screws (4 Used)
4—Washers (4 Used)
5—Front Plate

6-O-Rings (2 Used)
7-Snap Ring
8-Bearing
9-Snap Ring

ASSEMBLE PLANETARY GEAR CASE

Lubricate all parts before assembly.

1. Install bearing (A) in front plate (B) and retain with snap ring (C).

2. Install gears (A) in carrier (B) and press dowel pins (C) in until they are flush with carrier.

(C) in until they are flush with carrier.

3. Press carrier shaft through bearing (A) in front plate (B).
4. Retain bearing with snap ring (C).

5. Press new shaft seal (A) flush with snap ring groove. Retain with snap ring (B).
6. Install O-ring on front plate. Install the front plate into housing using four cap screws. Torque cap screws to 20-24 N•m (15-18 lb-ft).
7. Install adapter plate and O-ring.
8. Install pump on planetary and tighten cap screws to 75-81 N•m (55-60 lb-ft).

9. Bleed system. (See Install Pump in this section.)

GENERAL INFORMATION

A-Hollow Piston
 B-Solid Piston

The axial piston motor has a hollow piston (A) and a solid floating piston (B). Oil enters through a hole in the slipper of the hollow piston and forces both pistons down the swashplate ramps (C). This rotates the cylinder block (D) and shaft (E).

D-Cylinder Block
E-Shaft

The motor has a $82.6 \mathrm{~cm}^{3}$ (5.04 cu . in.) displacement and operates at 1176 rpm , no load.

The motor is located near the right side of the carrier frame.

REMOVE MOTOR

1. Remove three hydraulic lines (A) and place caps on lines.
2. Remove shield and coupler chain (B).
3. Disengage conditioner roll drive chain from motor sprocket. It is not necessary to remove chain from machine. (See Remove Conditioner Roll Drive Chain in Section 40.)

4. Remove two cap screws (C) and motor.

DISASSEMBLE MOTOR

1. Remove sprockets, drain oil, and clean outside of motor thoroughly.
2. Remove snap ring (C) and seal (B). It is necessary to destroy seal to remove.

4
CAUTION: Backplate is under spring tension and may move out of housing as cap screws are loosened.

3. Remove six cap screws (A) from backplate.
4. Remove snap ring (B).
5. Remove bearing and washers (A).
6. Use a plastic mallet to loosen backplate (C). Rotate housing (D) and remove backplate.
7. Inspect needle bearing and replace if necessary.
A-Washers and Bearing
B-Snap Ring
C-Backplate
D-Housing

EX,1474,6030,D -19-04MAY93
8. Remove O-ring (A) from backplate (B).

IMPORTANT: Mark pistons and piston block before removing pistons. Replace each piston in its original bore during assembly to prevent a slight loss of performance.
9. Remove connector plate (C), pistons (D), and spider (E) from motor.

```
A-O-Ring
B-Backplate
C-Connector Plate
D-Pistons
E-Spider
```

10. Remove pivot (not shown), spring (B), spring collar (A), and retaining ring (C) from drive shaft.
11. Remove complete piston block (D) and shaft assembly from motor.
12. Remove snap ring and seal from housing (F).

13. Inspect needle bearing (E) and replace if necessary.
```
A-Spring Collar
B-Spring
C-Retaining Ring
D-Piston Block
E-Bearing Race
F-Housing
```


14. Remove bearing (B), piston race (C), and pivot (A) from shaft.
15. Remove pistons (E) from piston block (F).
16. Remove bearing race (D) from housing.

```
A-Pivot
B-Thrust Bearing
C-Piston Race
D-Bearing Race
E-Pistons
F-Piston Block
```


17. Remove snap ring and spacer (A) from drive shaft (B).
18. Slide piston block (C) from shaft.
19. Remove snap ring and key (D) from shaft.

A-Spacer
B-Drive Shaft
C-Piston Block
D—Key

INSPECT MOTOR

1. Wash all parts in a clean solvent.
2. Examine needle bearings (3) in housing (4) and backplate (24). If needles are free of play and remain in bearing cage, there is no need to replace bearing.
3. Inspect bearing race (5), thrust bearing (6), and piston race assembly (7). All surfaces should be free of any signs of wear.
4. Inspect pilot (19) and pivot (8). Conical surfaces should be free of wear and score marks.
5. Inspect pistons (10). Sides and rounded end should be smooth and free of surface marks.
6. Inspect piston block (11). Bores should be free of scoring. Keyway should be free of damage.
7. Inspect pistons (21). O.D. surfaces should be smooth and free of scoring. Slippers should be smooth and free of scoring. Slippers should be a snug fit to the piston. Face of slippers should be flat and free of scoring and flaking.
8. Inspect spider (20) for wear or damage.
9. Inspect connector plate (22) for excessive scoring.
10. Inspect flat surface of backplate (24). It should be free of excessive scoring.
11. Inspect thrust washers (27) and bearing (28). They should be free of wear and cracks.
12. Inspect shaft (15) for fretting in bearing areas. Inspect keyway and key for wear.

ASSEMBLE MOTOR

1. Install seal (A) and snap ring (B).

2. Install snap ring (A) on shaft. Install key (B) in drive shaft.
3. Slide piston block (C) on shaft with 45 degree chamfer (D) on inside diameter toward round snap ring on shaft.
4. Slide spacer (E) on shaft.

> A-Snap Ring
> B-Key
> C-Piston Block
> D-45 Chamfer
> C-Spacer

5. Lubricate the pistons (A) and install them in the bores next to the drive end of the shaft, rounded ends facing outward. Install each piston in its original bore.
6. Slide pivot (B) over shaft.

NOTE: The two pivots are identical.
7. Slide piston race (C) and thrust bearing (D) onto shaft.

> A-Pistons
> B-Pivot
> C—Piston Race
> D-Thrust Bearing
8. Lubricate the bearing race (G) and install in housing.
9. Lay housing on side and insert lubricated shaft and piston block assembly (A) in housing (B). Be certain parts are properly aligned and seated.
10. Place spring collar (C) and spring (D) over shaft.
11. Install pivot (F).
12. Install pilot (E).


```
A-Piston Block
B-Housing
C-Spring Collar
D-Spring
E-Pilot
F-Pivot
G-Bearing Race
```

13. Lubricate and assemble pistons (A) in spider (B).
14. Assemble piston assembly into piston block. Install each piston into its original bore.
15. Lubricate shoes of pistons and lay flat part of connector plate (C) over pistons.
16. Install new O-ring on backplate.
17. Install and rotate backplate until all bolt holes are properly aligned. Insert six cap screws and tighten to 22 $\mathrm{N} \cdot \mathrm{m}(16 \mathrm{lb}-\mathrm{ft})$.
18. Install snap ring, thrust washer, thrust bearing, thrust washer, and retain with snap ring.
19. Install washer and shaft seal. Retain with snap ring.

IMPORTANT: Clean hydraulic motor shaft thoroughly.
20. Position conditioner drive sprocket (A) on hydraulic motor shaft with $62-65 \mathrm{~mm}$ (2.4-2.6 in.) (B) between motor flange and inside of sprocket, tighten set screws and jam nuts.
21. Install platform drive sprocket (C) on hydraulic motor shaft, and leave set screws and jam nuts loose.

INSTALL HYDRAULIC MOTOR

1. Install hydraulic motor (A) through side sheet. Tip motor down to install chain (B) over sprocket

IMPORTANT: Make sure cap screws are tightened to

 $75 \mathrm{lb}-\mathrm{ft}$ ($102 \mathrm{~N} \cdot \mathrm{~m}$). If cap screws are not tightened, machine damage may occur.2. Fasten hydraulic motor to right side sheet with two $1 / 2$ $\times 1-3 / 4-$ in. cap screws (A), four $0.531 \times 1.00 \times 0.125-\mathrm{in}$. hardened washers (B), and lock nuts (C). On each cap screw, install one washer under cap screw head and one washer under nut. Tighten cap screws to 75 lb -ft (102 $\mathrm{N} \cdot \mathrm{m}$).

3. Position cross shaft sprocket with hydraulic motor sprocket so coupler chain can be installed.
4. Install coupler chain (A) around sprockets.
5. Slide sprocket assembly and cross shaft as far as possible onto the motor shaft.
6. Tighten setscrews and jam nuts (B).

7. Install shield (A) and spacers with two cap screws.
8. Change oil if system was contaminated.
9. Check oil level and install replacement filter.
10. Start tractor and run mower-conditioner slowly for one minute to bleed air.
11. Check hose connections for leaks and recheck oil level.

IMPORTANT: To prevent excessive wear or

 component failure, do not run machine without load for long periods of time.12. Run at full PTO speed for one minute and check operation.
13. Change filter after ten hours of operation.

Group 35 Relief Valve and Filter

GENERAL INFORMATION

The system relief valve (A) and filter (B) are located on the left side of the tongue. The filter is a 10 -micron full flow filter which has a bypass valve (C) in the filter base.

RELIEF VALVE

The relief valve (A), external O-ring (B), and internal O-ring with backup ring (D) are the only replaceable items in the housing (C). When the relief valve is replaced, (B) and (D) should also be replaced.

A test port (E) is located in the top of the housing to measure drive system pressure and relief pressure. The port has a $1 / 4-\mathrm{in}$. NPT thread.

```
A-Relief Valve
B-O-Ring
C-Relief Valve Housing
D-O-Ring and Backup Ring
E-Test Port
```


REMOVE CYLINDER

1. Remove tie bands retaining hydraulic hoses.
2. Disconnect two hydraulic hoses (A) and cap open ends.
3. Remove two pivot pins (B) and steering cylinder (C).

RECONDITION CYLINDER

IMPORTANT: Do not clamp cylinder barrel in vise because damage will result.

1. Clamp cylinder clevis (A) in vise.
2. Remove two set screws (B).
3. Use large pipe wrench to thread retainer (C) off barrel.
4. Insert screwdriver in hose port to pry end cap (D) from barrel.

> A-Cylinder Clevis
> B-Set Screws
> C-Retainer
> D-End Cap
5. Pull cylinder rod (A) from barrel.
6. Clamp rod clevis (B) in vise and remove nut (C) with impact wrench.

NOTE: Note position of backup ring and seal lips for reassembly.
7. Remove piston (D), end cap (E), and retainer (F) from cylinder rod. Remove and discard seals, O-rings, and back-up rings.

8. Inspect rod (A) and inside diameter of barrel (G) for nicks, scratches, or score marks. Replace damaged or worn parts.

E-End Cap
F-Retainer
G-Barrel

ASSEMBLE STEERING CYLINDER

- Clean and dry all parts thoroughly.
- Replace all O-Rings and seals.
- Apply a light film of hydraulic oil on O-Rings and metal parts.

1. Assemble cylinder in reverse order of disassembly.

NOTE: Stake clevis on cylinder rod because pin-to-pin distance is not adjustable.

```
A-Set Screws
B-Retainer
C-Barrel
D-Seal 0.250 x 1.50 in. ID
E-Backup Ring 0.125 x 3 in. ID
F-End Cap
G-O-Ring 0.139 x 2.734 in. ID
H-Clevis
l—Rod
J-Piston
K—Nut
L-Seal 1.50 ID x 1.87 in. OD
M-Backup Ring
N-O-Ring 0.070 x 1.364 in. ID
O-Seal 2.625 ID x 3 in. OD
P-Backup Ring
```


POSITION AND SECURE HOSES

1. Attach mower-conditioner to tractor hitch and fasten with quick-lock pin.
2. Connect two hydraulic steering cylinder hoses to tractor outlet.
3. Move tongue to the maximum right position (cylinder fully extended).
4. Starting from upper pivot area, secure three motor hoses and lift hose with two tie bands (A) as shown.
5. Secure the three motor hoses with tie band (B).
6. Pull hoses to the right until they are snug.

7. Secure cylinder lift hose, cylinder base hose, and wiring harness to cylinder rod end fitting with tie band (C).
8. Secure the three motor hoses with two tie bands (D) as shown.

A-Tie Band Location (2)
B-Tie Band Location (1)
C-Tie Band Location (1)
D-Tie Band Location (2)

Group 45 Lift Cylinders

REMOVE LIFT CYLINDERS

1. Raise platform and lower both cylinder stops (A).
2. Lower machine onto cylinder stops and shut off tractor.

ACAUTION: Relieve pressure in system by cycling tractor levers in both directions to avoid injury from escaping pressure oil.

NOTE: Master cylinder on left side illustrated.
3. Disconnect hydraulic hoses (B) and cap open ends.
4. Remove pins (C) and cylinder.

RECONDITION MASTER CYLINDER

1. Remove external snap ring (A).
2. Push end cap (B) into barrel past internal snap ring (C).
3. Remove internal snap ring.
4. Pull rod (D) from cylinder barrel.

A-External Snap Ring
B-End Cap
C-Internal Snap Ring
D—Rod

IMPORTANT: Clamp rod near pin hole (A) to prevent damage to finished surface.

5. Clamp end of rod in vise.
6. Use impact wrench to remove nut (B).
7. Remove piston (E) and end cap (J) from rod. Remove and discard seals, O-rings and backup rings.

NOTE: Note position of backup rings and seal lips for
 reassembly.
8. Inspect cylinder barrel (A) inside diameter and rod (H) outside diameter for nicks, scratches, or score marks.
Replace damaged or worn parts.

ASSEMBLE MASTER CYLINDER

- Clean and dry all parts thoroughly.
- Replace all O-Rings and seals.
- Apply a light film of hydraulic oil on O-Rings and metal parts.

1. Assemble in reverse order of disassembly.

A-Barrel

B-Wiper $0.190 \times 2.375 \mathrm{ID} \times 2.500 \mathrm{in}$. OD
C-Seal 0.310×1.500 ID $\times 1.870 \mathrm{in}$. OD
D-O-Ring $0.094 \times 2.312 \mathrm{in}$. ID
E-Piston
F-Snap Ring
G-Nut
H-Rod
I-Backup Ring $0.050 \times 2.312 \mathrm{ID} \times 2.400 \mathrm{in}$. $O D$
J—End Cap
K—Seal 1.689 ID x 1.879 in . OD
L-Snap Ring
M—O-Ring $0.094 \times 1.500 \mathrm{in}$. OD
N -O-Ring $0.094 \times 2.187 \mathrm{in}$. OD
O—Seal (4 grooves) $0.190 \times 2.375 \mathrm{ID} \times 2.50 \mathrm{in}$. OD

RECONDITION SLAVE CYLINDER

Clean outside of cylinder thoroughly before disassembly.
IMPORTANT: Do not clamp barrel of cylinder in vise. Damage to cylinder may result.

1. Clamp cylinder in vise by clamping at end cap as shown. Use a block of wood to support end of cylinder.
2. Pull rod (A) out until end of rod and snap ring can be seen through inlet port (B).

3. Insert screwdriver (A) in inlet port and pry lock ring (B) into deep groove in the rod assembly. Rotate rod to insure entire ring is in groove.

E15632
4. Remove rod assembly (A) from cylinder housing.
5. Remove shaft seal (B) and wiper (C) from housing.

NOTE: Note position of seal lips for reassembly.
6. Inspect inside diameter of housing and outside diameter of rod for nicks, scratches or score marks. Replace damaged or worn parts.

NOTE: Replace shaft seal, wiper seal, and lock ring. Do
 not reuse.

ASSEMBLE SLAVE CYLINDER

A-Lock Ring
B—Piston Rod
Clean and dry all parts thoroughly. Oil metal parts lightly before assembly.

1. Install new lock ring (A) in deep groove of piston rod (B).
2. Install new shaft seal (D) and wiper (E) in cylinder housing (C).
3. Oil outside of piston rod and carefully insert rod in housing.
4. Push rod into housing until lock ring area of rod can be seen through the port.
5. Insert screwdriver (A) through port and pop lock ring (B) into the locked position.
6. Extend rod fully to make sure lock ring is locked.

BLEED LIFT CYLINDERS

A

CAUTION: Shield leaking oil during bleeding procedure. Escaping pressurized oil can cause injury.

1. Loosen hose fitting (A) at slave cylinder.
2. Raise machine and hold tractor lever for five seconds.
3. Tighten hose fitting.

4. Raise and lower machine to check phasing.
5. Repeat procedure until air is bled from hose and pipe between master and slave cylinders.

Conditioner-Continued	Pag
Arm, Remove roll	40-20-1
Chain, Install roll drive	40-15-3
Chain, Remove roll drive	40-15-1
Cross shaft, Replace	50-15-1
Description	40-05-1
Diagnosing malfunctions	40-10-1
Inspect parts	40-25-6
Roll pressure, Adjust	40-25-15
Roll timing, Adjust	40-25-16
Roll, Install upper - lower	40-25-9
Roll, Remove lower	40-25-4
Roll, Remove upper	40-25-1
Special tools	40-05-2
Specifications	40-05-2
Torque values	40-05-2
Connector, Replace electrical	50-30-3
Contact, Install electrical	50-30-5
Controller, Electric guard angle	50-30-6
Cross shaft	
Install	30-30-6
Remove	30-30-5
Cutterbar	
Diagnosing malfunctions	20-10-1
Fabricated tools	20-05-3
Install knives	20-15-1
Install non-clog guards 915001-	20-15-9
Install non-clog guards -915000	20-15-5
Install regular guards 915001-	20-15-7
Install regular guards -915000	20-15-3
Remove knives	20-15-1
Special tools	20-05-2
Specifications	20-05-1
Straighten	20-15-12
Time knives	20-15-2
Torque values	20-05-2
Cylinder	
Bleed lift	60-45-6
Hydraulic lift, Remove	60-45-1
Master lift, Assemble	60-45-3
Master lift, Recondition	60-45-1
Slave lift, Assemble	60-45-5
Slave lift, Recondition	60-45-4
Steering, Assemble	60-40-2
Steering, Recondition	60-40-1
Steering, Remove	60-40-1

D
Description
Carrier frame 50-05-1
Conditioner 40-05-1
Cutterbar 20-05-1
Drive, Hydraulic 60-05-1
Knife drive 20-05-1
Machine 10-10-1
Platform 30-05-1
Steering and platform lift 60-05-2
Diagnosing malfunctions
Carrier frame 50-10-1
Conditioner 40-10-1
Cutterbar 20-10-1
Hydraulic 60-10-1
Knife drive 20-10-1
Platform 30-10-1
Disassemble
Gear case, Planetary 60-25-1
Knife drive case 20-20-2
Motor, Hydraulic 60-30-2
Piston block, Hydraulic 60-20-5
Pump, Hydraulic 60-20-3
Drive, Platform 30-05-2
E
Electrical
Connector, Replace 50-30-3
Contact, Install 50-30-5
Guard angle controller 50-30-6
Special tools 50-30-3
Fabricated tools
Cutterbar 20-05-3
Knife drive 20-05-3
Filter, Hydraulic oil 60-35-1
Flare type tube fittings Tighten 10-15-5
Flow meter, Install 60-15-3
Flow, Check hydraulic 60-15-5
Frame
Lift Carrier 50-25-1
G
Grease
Extreme pressure and multipurpose 10-20-1
Knife drive 10-20-2

	Page
Guage shoes	
Adjust	30-15-6
Replace	30-15-1
Guard	
Non-clog -915000, Install	20-15-5
Non-clog 915001- , Install	20-15-9
Regular -915000, Install	20-15-3
Regular 915001- , Install	20-15-7
Guard angle, Adjust	30-15-3
Guard angle, Electric controller	50-30-6
H	
Hitch, Three-point	10-10-2
Hoses, Position and secure hydraulic	60-40-3
Hub, Recondition wheel	50-25-2
Hydraulic	
Description, Drive	60-05-1
Diagnosing malfunctions	60-10-1
Drive circuit, Diagnosing	60-15-2
Filter, Oil	60-35-1
Flow meter, Install	60-15-3
Flow, Check	60-15-5
Hoses, Position and secure	60-40-3
Lift cylinder, Assemble master	60-45-3
Lift cylinder, Assemble slave	60-45-5
Lift cylinder, Bleed	60-45-6
Lift cylinder, Recondition master	60-45-1
Lift cylinder, Recondition slave	60-45-4
Lift cylinders, Remove	60-45-1
Motor	60-30-1
Motor case drain, Check	60-15-7
Motor, Assemble	60-30-6
Motor, Disassemble	60-30-2
Motor, Inspect	60-30-5
Motor, Remove	60-30-1
Oil temperature, Check	60-15-4
Piston block, Assemble	60-20-7
Piston block, Disassemble	60-20-5
Planetary gear case, Assemble	60-25-6
Planetary gear case, Disassemble	60-25-1
Planetary gear case, Inspect	60-25-1
Platform lift	60-05-2
Preliminary check	60-15-1
Pump	60-20-1
Pump case drain, Check	60-15-6
Pump, Assemble	60-20-8
Pump, Disassemble	60-20-3
Pump, Inspect	60-20-7

Hydraulic-Continued Page	
Pump, Install	60-20-11
Pump, Remove	60-20-2
Relief pressure, Check	60-15-5
Relief Valve	60-35-1
Specifications	60-05-3
Steering	60-05-2
Steering cylinder, Assemble	60-40-2
Steering cylinder, Recondition	60-40-1
Steering cylinder, Remove	60-40-1
Torque values	60-05-3
Warm oil	60-15-4
Hydrostatic oil	10-20-1
I	
Inch torque values	10-15-4
Inspect	
Arm, Conditioner roll	40-20-2
Augers	30-25-7
Conditioner parts	40-25-6
Knife drive case	20-20-5
Motor, Hydraulic	60-30-5
Pump, Hydraulic	60-20-7
Reel parts	30-20-4
Wheel support	50-25-5
Install	
Arm, Conditioner roll	40-20-3
Auger	30-25-8
Chain, Conditioner roll drive	40-15-3
Chain, O-Ring connector link	40-15-2
Cross shaft	30-30-6
Electrical contact	50-30-5
Flow meter	60-15-3
Knife drive case	20-20-12
Knives	20-15-1
Motor, Hydraulic	60-30-8
Non-clog guards 915001-	20-15-9
Non-clog guards -915000	20-15-5
Powershaft	30-30-3
Pump, Hydraulic	60-20-11
Reel	30-20-5
Regular guards -915000	20-15-3
Regular guards 915001-	20-15-7
Roll, Lower conditioner	40-25-9
Roll, Upper conditioner	40-25-9
Tongue	50-20-3
Warning lights	50-30-2

Page			Page
K		M	
Knife drive		Machine	
Assemble case	20-20-7	Description	10-10-1
Belt, Adjust	30-30-14	Specifications	10-15-1
Belt, Align	30-30-12	Master lift cylinder, Assemble	60-45-3
Belt, Replace left	30-30-12	Master lift cylinder, Recondition	60-45-1
Belt, Replace right	30-30-13	Metric torque values . .	10-15-3
Diagnosing malfunctions	20-10-1	Motor, Hydraulic	
Disassemble case . . .	20-20-2	Case drain, Check	60-15-7
Fabricated tools	20-05-3	Assemble .	60-30-6
Grease	10-20-2	General information	60-30-2
Inspect case	20-20-5	Inspect	60-30-5
Install case	20-20-12	Install .	60-30-8
Knives, Install	20-15-1	Remove	60-30-1
Knives, Remove	20-15-1		
Remove case	20-20-1		
Special tools	20-05-2	N	
Specifications	20-05-1	Non- N	
Time knives .	20-15-2	Non-clog guards 915001-	
Torque values	20-05-2	Install	20-15-9
Knife head, Recondition	20-15-16	Non-clog guards -915000	
Knife head, Replace . .	20-15-16	Install	20-15-5
Knife section Non-clog hold-down, Adjust 20-15-12			
Bolt-on, Replace	20-15-13		
Replace center sections	20-15-14	0	
Riveted, Replace	20-15-15		
Sharpen	20-15-13	O-Ring fittings	
		Tighten . .	10-15-5
		Oil	
		Hydrostatic	10-20-1
		Warm hydraulic	60-15-4
Left reel teeth, Replace	30-20-9	Oil filter, Hydraulic	60-35-1
Lift Carrier Frame	50-25-1	Oil temperature, Check	60-15-4
Lift cylinder			
Bleed	60-45-6		
Hydraulic, Remove	60-45-1	P	
Master, Assemble	60-45-3	Piston block, Assemble	60-20-7
Master, Recondition	60-45-1	Piston block, Disassemble	60-20-5
Slave, Assemble	60-45-5	Planetary gear case, Assemble	60-25-6
Slave, Recondition	60-45-4	Planetary gear case, Disassemble	60-25-1
Lights, Install warning	50-30-2	Platform	
Lights, Special tools	50-30-3	Attach	30-15-2
Lights, Warning	50-30-1	Cross shaft, Install	30-30-6
Lower auger stripper. Adjust	30-25-10	Cross shaft, Remove	30-30-5
Lower conditioner roll, Install	40-25-9	Description	30-05-1
Lower conditioner roll, Remove	40-25-4	Diagnosing malfunctions	30-10-1
Index-4			

Platform—Continued Page	
Drive	30-05-2
Drive belt, Adjust	30-30-15
Float,adjust	30-15-5
Guage shoes, Adjust	30-15-6
Guard angle, Adjust	30-15-3
Guard angle, Electric controller	30-15-4
Powershaft, Install	30-30-3
Powershaft, Recondition	30-30-1
Powershaft, Remove	30-30-1
Remove	30-15-1
Special tools	, 30-05-4
Specifications	30-05-3
Torque values	30-05-3
Position hoses, Hydraulic	60-40-3
Powershaft	
Install	30-30-3
Recondition	30-30-1
Remove	30-30-1
Preliminary checks, Hydraulic	60-15-1
Pump, Hydraulic	
Assemble	60-20-8
Case drain, Check	60-15-6
Disassemble	60-20-3
General information	60-20-1
Inspect	60-20-7
Install	60-20-11
Remove	60-20-2
R	
Recondition	
Cylinder, Master lift	60-45-1
Cylinder, Slave lift	60-45-4
Cylinder,Steering	60-40-1
Knife head	20-15-16
Powershaft	30-30-1
Sheave, Reel drive variable	30-30-7
Wheel hub	50-25-2
Reel	
Adjust	30-20-6
Belt, Adjust drive	30-30-14
Belt, Replace drive	30-30-13
Inspect parts	30-20-4
Install	30-20-5
Remove	30-20-1
Speed, adjust	30-30-9
Teeth, Replace center	30-20-8
Teeth, Replace left	30-20-9
Teeth, Replace right	30-20-8
Variable sheave, Recondition	30-30-7

nemen

[^0]: a "Lubricated" means coated with a lubricant such as engine oil, or fasteners with phosphate and oil coatings. "Dry" means plain or zinc plated without any lubrication.

[^1]: - LEFT-HAND END - Install LEFT-HAND NOTCHED high arch hold-down (D), 7/16 x 2-3/4 round-head bolts (K), and nuts (C) in holes 2 and 3 from the right end.

[^2]: A-Upper Link
 B-Bolt
 C-Float Spring
 D—Down Stop Cable

[^3]: A-Lever
 B-Pulley
 C-Reel Drive Belt
 D-Fourth Hole

[^4]: A-Hook
 B-Pin
 C-Conditioner Roll Arm
 D-Carrier Frame
 E—Floor Jack
 F—Jack Stand
 G-Lower Conditioner Roll

